Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Differential thermal analysis systems

Phase equilibria of the isothiazole-water system have been investigated by differential thermal analysis (76BSF1043), and it has been established that a stable crystalline clathrate (isothiazole-34H20) forms below 0 °C. [Pg.144]

The Sr-Cu system has been critically assessed. The most recent phase diagram, determined by combining differential thermal analysis and x-ray diffraction techniques, contains two intermediate compounds, both of which form in peritectic reactions, SrCu (588°C) and SrCu, (845°C) SrCu has also been prepared for independent structural analysis-. ... [Pg.443]

Phase diagrams give valuable information about the compounds that can form in a system of components. These compounds can then be prepared and studied. For the experimental determination of phase diagrams the following methods are used. In differential thermal analysis (DTA) a sample of a given composition is heated or cooled slowly... [Pg.37]

Measurements of differential scanning calorimetry (DSC) were obtained on a TA Instruments 2910 thermal analysis system (Fig. 2). Samples of approximately 1-2 mg were accurately weighed into an aluminum DSC pan, and covered with an aluminum lid that was crimped in place. The samples were then heated over the range of 20-140 °C, at a heating rate of 10 °C/min. Valproic acid was found to boil at 227 °C. [Pg.214]

Fig. 3 Schematic diagram illustrating the essential aspects of the differential thermal analysis technique. The experimental observable is the differential temperature between sample and reference, which will be plotted as a function of the system temperature. Fig. 3 Schematic diagram illustrating the essential aspects of the differential thermal analysis technique. The experimental observable is the differential temperature between sample and reference, which will be plotted as a function of the system temperature.
Differential thermal analysis proved to be a powerful tool in the study of compound polymorphism, and in the characterization of solvate species of drug compounds. In addition, it can be used to deduce the ability of polymorphs to thermally interconvert, thus establishing the system to be monotropic or enantiotropic in nature. For instance, form I of chloroquine diphosphate melts at 216°C, while form II melts at 196°C [18]. The DTA thermogram of form I consists of a simple endotherm, while the thermogram of form II is complicated (see Fig. 4). The first endotherm at 196°C is associated with the melting of form II, but this is immediately followed by an exotherm corresponding to the crystallization of form I. This species is then observed to melt at 216°C, establishing it as the thermodynamically more stable form at the elevated temperature. [Pg.230]

Duckworth, R. B. Differential thermal analysis of frozen food systems. I. The determination of unfreezable water. Joum. Food Technol. 6, p. 317-327, 1971... [Pg.118]

ARC = Accelerating Rate Calorimeter (Columbia Scientific Instrument Corp.) DSC = Differential Scanning Calorimeter DTA = Differential Thermal Analysis RC1 = Reactor Calorimeter (Mettler-Toledo Inc.) RSST = Reactive System Screening Tool (Fauske and Associates) VSP = Vent Size Package (Fauske and Associates) ... [Pg.6]

Dynamic mechanical anlaysis (DMA) measurements were done on a Rheometrics RDS-7700 rheometer in torsional rectangular geometry mode using 60 x 12 x 3 mm samples at 0.05% strain and 1 Hz. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and thermogravimetric analysis (TGA) were performed on a Perkin-Elmer 7000 thermal analysis system. [Pg.43]

On the basis of an IR study of some s-triazines and HA systems, several authors reported that ionic bonding took place between a protonated secondary amino group of the s-triazine and a carboxylate anion on the HA [17,146,147]. Successive studies, mainly conducted by IR spectroscopy, confirmed previous results and also provided evidence for the possible involvement of the acidic phenol-OH of HA in the proton exchange of the s-triazine molecule [17, 146-150]. Differential thermal analysis (DTA) curves measured by Senesi and Testini [146, 147] showed an increased thermal stability of the HA-s-triazine complexes, thus confirming that ionic binding took place between the interacting products. [Pg.133]

Resin Analysis. Thermal analysis of the BCB resin systems included Differential Scanning Calorisietry (DSC) using a DuPont 010 cell and Thermal Gravimetric Analysis (TGA) run on a DuPont 951 TGA, the entire thermal analysis system run using an Omnitherm model 35053... [Pg.368]

More advanced techniques are now available and section 4.2.1.2 described differential scanning calorimetry (DSC) and differential thermal analysis (DTA). DTA, in particular, is widely used for determination of liquidus and solidus points and an excellent case of its application is in the In-Pb system studied by Evans and Prince (1978) who used a DTA technique after Smith (1940). In this method the rate of heat transfer between specimen and furnace is maintained at a constant value and cooling curves determined during solidification. During the solidification process itself cooling rates of the order of 1.25°C min" were used. This particular paper is of great interest in that it shows a very precise determination of the liquidus, but clearly demonstrates the problems associated widi determining solidus temperatures. [Pg.91]

The thermal properties of benzoic acid were evaluated using simultaneous differential thermal analysis (DTA) and thermogravimetric analysis (TGA). This work was performed on a Shimadzu DT-30 Thermal Analyzer system, which was calibrated using indium standard. Using a heating rate of 10°C/min, the thermograms presented in Figure 3 were obtained. [Pg.9]

Differential scanning calorimetry is primarily used to determine changes in proteins as a function of temperature. The instrument used is a thermal analysis system, for example a Mettler DSC model 821e. The instrument coupled with a computer can quickly provide a thermal analysis of the protein solution and a control solution (no protein). The instrument contains two pans with separate heaters underneath each pan, one for the protein solution and one for the control solution that contains no protein. Each pan is heated at a predetermined equal rate. The pan with the protein will take more heat to keep the temperature of this pan increasing at the same rate of the control pan. The DSC instrument determines the amount of heat (energy) the sample pan heater has to put out to keep the rates equal. The computer graphs the temperature as a function of the difference in heat output from both pans. Through a series of equations, the heat capacity (Cp) can be determined (Freire 1995). [Pg.157]

Any compd or mixt whose heat of formation is smaller by 500 J/g (or more) than the sum of the heats of formation of its reaction products must be regarded with suspicion and handled with more than usual care. The hazards involved in working with a potentially expl system are directly proportional to the amount and to the rate of energy release. Because the reaction kinetics cannot be predicted, the propensity of a new system for expl reaction must be determined. The sensitivity of the system can be evaluated by means of impact, friction, shock and electrostatic discharge. Appropriate methods are reviewed in the Experimental and Hazard Assessment section of this article. Sensitivity to heat or elevated temp may be evaluated by use of differential thermal analysis (DTA)... [Pg.243]

The phase equilibria and diagrammatic structures in a two-component system are illustrated in Figure 7 (12). The phase diagrams have often been determined by inspection with the naked eye. More exact methods include x-ray and NMR analysis, density measurements, separation by high-speed centrifugation or differential thermal analysis. [Pg.25]


See other pages where Differential thermal analysis systems is mentioned: [Pg.704]    [Pg.2968]    [Pg.207]    [Pg.704]    [Pg.2968]    [Pg.207]    [Pg.219]    [Pg.34]    [Pg.41]    [Pg.454]    [Pg.455]    [Pg.23]    [Pg.10]    [Pg.276]    [Pg.282]    [Pg.215]    [Pg.98]    [Pg.65]    [Pg.72]    [Pg.376]    [Pg.94]    [Pg.601]    [Pg.150]    [Pg.190]    [Pg.200]    [Pg.108]    [Pg.419]    [Pg.901]    [Pg.924]    [Pg.155]    [Pg.13]   


SEARCH



Differential analysis

Differential system

Differential thermal analysis systems DuPont

Differential thermal analysis systems Mettler

Differential thermal analysis systems Perkin-Elmer

Thermal Analysis System

Thermal systems

© 2024 chempedia.info