Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dielectric surface layer

These results suggest, that also the top pzt surface has different properties compared to the bulk values. In fact, various theoretical models already suggested the existence of a pure dielectric surface layer [38] to be present on pzt thin films. Here, for the first time, we have given experimental evidence that this is true for both the inner and outer interfaces in pzt on the nanometer scale... [Pg.248]

The same dependence between concentration of M nanoparticles (Ns) on a surface of a dielectric substrate and their catalytic activity has been also found out in the investigation of an amorphous films of M nanoparticles [117], prepared by laser electrodispersion technique and deposited on Si02 dielectric surface layer of thermally oxidized Si (see Chapter 15). It has been shown that in various reactions of chlorinated hydrocarbons catalyzed by so prepared nanostructured Cu film with growth Ns the value of Y increases firstl, reaches a maximum at Ns 4 x 1012 particles/cm2, and then quickly falls. [Pg.570]

The FET-based immunosensor device shown in Figure 4.6 is composed of a semiconductor channel and source, drain and gate electrodes, all of which are located on a substrate (commonly a Si wafer) with an insulating (dielectric) surface layer. The source and drain electrodes communicate with each other through the semiconductive channel, whde the gate electrode is used to modulate the channel conductance via an applied electrical potential. [Pg.215]

Chemically pure semiconducor materials can absorb only those photons, the energy hv of which exceeds the band gap E . Therefore, E. value determines the "red boundary of the light that is used in photocatalytic action of these materials. By way of example. Table 1 presents the values of Eg and the corresponding values of boundary wave length Xg= hc/E (where c is the velocity of light) for some semiconductor and dielectric oxides [2]. However, a semiconductor PC can be sensitized to light with X> by chemical modifications of its surface layer or adsorption of certain molecules on its surface, provided that such treatment creates additional full or empty electron levels in the band gap of the semiconductor material. [Pg.43]

Before fluorination, the dielectric constant ofpoly(bisbenzocyclobutene) was 2.8, and this value was reduced to 2.1 after plasma treatment. No data were reported in the paper on characterization of structure or properties, except for the dielectric constant of the modified poly(bisbenzocyclobutene). The authors did report that the thermal stability offluorinatedpoly(vinylidenefluoride) was inferior to the original poly(vinylidenefluoride) when treated in a similar way. One of the probable reasons for the low thermal stability is that the NF3 plasma degraded the polymer. According to their results, the thickness of fluorinated poly(bisbenzo-cyclobutene) was reduced by 30%. The same phenomenon was observed for other hydrocarbon polymers subjected to the NF3 plasma process. A remaining question is whether plasma treatment can modify more than a thin surface layer of the cured polymer Additionally, one of the side products generated was hydrogen fluoride, which is a serious drawback to this approach. [Pg.293]

Three-methods have been pursued to organize monolayers from different organic compounds to form molecular monolayer FETs (1) thermal evaporation of approximately monolayer thickness on the dielectric surface of FETs, (2) Langmuir-Blodgett assembly on the water surface and transfer to device surfaces, and (3) self-assembly of functionalized organic compounds on the surface of the gate, or gate dielectric layers of FETs. [Pg.219]

Equation (6) defines most of the intrinsic characteristics of the DEA process. For further information on the mechanism of transient anion formation and its effects in isolated electron-atom and electron-molecule systems, the reader is referred to the review articles by Schulz [17] and others [7,19,20]. Information on resonance scattering from single layer and submonolayer of molecules physisorbed or chemisorbed on conductive surfaces can be found in the review by Palmer et al. [21-23]. The present article provides information essentially on resonances in atoms and molecules condensed onto a dielectric surface or forming a dielectric thin film. [Pg.210]

Surface layers of silicon oxide are important in semiconductor device fabrication as interlayer dielectrics for capacitors, isolation of conducting layers, or as masking materials. However, anodic oxides, due to their relatively poor electrical properties, breakdown voltage, and leakage current, have not yet found much use in device technology, and cannot compete with thermal oxides obtained at high temperatures of 700 to 900 °C. [Pg.322]

Macroscopic experiments allow determination of the capacitances, potentials, and binding constants by fitting titration data to a particular model of the surface complexation reaction [105,106,110-121] however, this approach does not allow direct microscopic determination of the inter-layer spacing or the dielectric constant in the inter-layer region. While discrimination between inner-sphere and outer-sphere sorption complexes may be presumed from macroscopic experiments [122,123], direct determination of the structure and nature of surface complexes and the structure of the diffuse layer is not possible by these methods alone [40,124]. Nor is it clear that ideas from the chemistry of isolated species in solution (e.g., outer-vs. inner-sphere complexes) are directly transferable to the surface layer or if additional short- to mid-range structural ordering is important. Instead, in situ (in the presence of bulk water) molecular-scale probes such as X-ray absorption fine structure spectroscopy (XAFS) and X-ray standing wave (XSW) methods are needed to provide this information (see Section 3.4). To date, however, there have been very few molecular-scale experimental studies of the EDL at the metal oxide-aqueous solution interface (see, e.g., [125,126]). [Pg.474]

It should be noted that dielectric and optical properties of the near-the-surface layer of a semiconductor, which vary in a certain manner under the action of electric field, depend also on the physicochemical conditions of the experiment and on the prehistory of the semiconductor sample. For example, Gavrilenko et al (1976) and Bondarenko et al. (1975) observed a strong effect of such surface treatment as ion bombardment and mechanical polishing on electroreflection spectra. The damaged layer, which arises in the electrode due to such treatments, has quite different electrooptic characteristics in comparison with the same semiconductor of a perfect crystalline structure (see also Tyagai and Snitko, 1980). [Pg.323]

Figure 18. The centers of mass of the induced electronic charge (xe), and induced polarization charge (x,) as a function of the amount of induced surface charge, in units of 10-3 e/(a.u.)3. The black filled circles show the calculated values of xe, and the solid black line is a quadratic fit to these values. The open circles indicate the calculated center of mass of the xs (equal to the edge position of an equivalent, classical uniform dielectric), and the line labeled Exp. dielectric edge indicates where they would need to be in order to reproduce the experimental compact capacity. The line labeled Shifted Oxygen dist. is the position of the oxygen surface layer as a function of charge, shifted downward by 2.4 a.u. From Ref. 52, by permission. Figure 18. The centers of mass of the induced electronic charge (xe), and induced polarization charge (x,) as a function of the amount of induced surface charge, in units of 10-3 e/(a.u.)3. The black filled circles show the calculated values of xe, and the solid black line is a quadratic fit to these values. The open circles indicate the calculated center of mass of the xs (equal to the edge position of an equivalent, classical uniform dielectric), and the line labeled Exp. dielectric edge indicates where they would need to be in order to reproduce the experimental compact capacity. The line labeled Shifted Oxygen dist. is the position of the oxygen surface layer as a function of charge, shifted downward by 2.4 a.u. From Ref. 52, by permission.
Figure 3.1 shows a simplified picture of an interface. It consists of a multilayer geometry where the surface layer of thickness d lies between two centrosymmetric media (1 and 2) which have two different linear dielectric constants e, and e2, respectively. When a monochromatic plane wave at frequency co is incident from medium 1, it induces a nonlinear source polarization in the surface layer and in the bulk of medium 2. This source polarization then radiates, and harmonic waves at 2 to emanate from the boundary in both the reflected and transmitted directions. In this model, medium 1 is assumed to be linear. [Pg.147]

The presence in the cluster of a positively charged impurity has also been considered, analyzing, by first principles, the screening due to the Si-NCs [123,124]. A reduction of screening in Si nanostructures with respect to bulk Si has been already observed [52] and predicted [125]. This reduction is a fundamental process at the basis of the enhancement of both the electron-hole interaction and the impurity activation energies in nanosized objects, and is due to the fact that close to the surface there is a dielectric dead layer, with a finite-range reduction of the dielectric constant due to the dielectric mismatch at the nanocrystal-environment interface. [Pg.245]

A higher order nonlinear dielectric microscopy technique with higher lateral and depth resolution than conventional nonlinear dielectric imaging is investigated. The technique is demonstrated to be very useful for observing surface layers of the order of unit cell thickness on ferroelectric materials. [Pg.312]


See other pages where Dielectric surface layer is mentioned: [Pg.333]    [Pg.34]    [Pg.333]    [Pg.34]    [Pg.861]    [Pg.197]    [Pg.250]    [Pg.251]    [Pg.587]    [Pg.74]    [Pg.136]    [Pg.105]    [Pg.185]    [Pg.831]    [Pg.489]    [Pg.246]    [Pg.474]    [Pg.98]    [Pg.172]    [Pg.68]    [Pg.107]    [Pg.2]    [Pg.213]    [Pg.224]    [Pg.253]    [Pg.464]    [Pg.64]    [Pg.38]    [Pg.459]    [Pg.286]    [Pg.230]    [Pg.144]    [Pg.236]    [Pg.245]    [Pg.247]    [Pg.314]    [Pg.324]    [Pg.97]   
See also in sourсe #XX -- [ Pg.248 ]

See also in sourсe #XX -- [ Pg.1007 ]

See also in sourсe #XX -- [ Pg.1007 ]




SEARCH



Dielectric layers

Dielectric surface

Gate Dielectrics and Surface Passivation Layers for Organic Field Effect Transistors

Layered surfaces

Surface layers

© 2024 chempedia.info