Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dicarboxylic acid anhydrides carboxylic acids

Heating pyridine-2,3-dicarboxylic acid anhydride with l-ethyl-2-methylindole has been claimed to yield solely the pyridine-2-carboxylic acid, albeit in low yield. This then clearly reacts with Af,A/-diethyl-3-toluidine in acetic anhydride to give the 7-azaphthalide. This is surprising in view of a later report70 in which a one-pot process has been described. Heating pyridine-2,3-dicarboxylic anhydride, prepared in situ, with the indole and subsequent reaction with 3-/V,/V-diethylamino-phenetol under identical conditions to those used in Scheme 8 (but without intermediate isolations) produced a 20 1 mixture of the 4- and 7-azaisomers 16 and 17. It appears that in the previous report the major intermediate isomer, the pyridine-3-carboxylic acid, has not been isolated. [Pg.109]

Matsnda, H. and Ueda, M. (1985d). Preparation and ntiUsation of esterified woods bearing carboxyl gronps. VI. Stepwise alternately adding esterification reaction of esterified woods with epoxides and dicarboxylic acid anhydrides. Mokuzai Gakkaishi, 31(6), 468-474. [Pg.216]

Friedel-Crafts Acylation, The Friedel-Crafts acylation procedure is the most important method for preparing aromatic ketones and their derivatives. Acetyl chloride (acetic anhydride) reacts with benzene in the presence of aluminum chloride or acid catalysts to produce acetophenone [98-86-2], CgHgO (1-phenylethanone). Benzene can also be condensed with dicarboxylic acid anhydrides to yield benzoyl derivatives of carboxylic acids. These benzoyl derivatives are often used for constructing polycyclic molecules (Haworth reaction). For example, benzene reacts with succinic anhydride in the presence of aluminum chloride to produce p-benzoylpropionic acid [2051-95-8] which is converted into a-tetralone [529-34-0] (30). [Pg.40]

Pyrazino[2,3-d]pyridazine-5,8-dione (420) can be prepared from pyrazine-2,3-dicarboxylic acid anhydride (419). Condensation of hydrazine with ethyl 5-acylpyridazine-4-carboxylates (421) gives pyridazino[4,5-d]pyridazin-l(2//)-ones (422) (79M365). [Pg.645]

The O-carboxyhydroxamic acid, prepared by treatment of pyrazine 2,3-dicarboxylic acid anhydride with hydroxy la mine, gives an O-benzoyl derivative. This forms a sodium salt which is isolated as a methanolate and which on heating in boiling toluene gives a mixture of 24% 3-aminopyrazine 2-carboxylic acid and 55% of the corresponding methyl ester (Scheme 20a).253a... [Pg.148]

When dicarboxylic acid anhydrides are reacted with wood, esterified woods bearing carboxyl groups are obtained as follows [Reaction (13)] ... [Pg.169]

A number of reactions of metal salts can be rationalized in terms of the formation of a carbanion adjacent to the carboxylate. Dibasic metals such as calcium bring two carboxylate units close to each other so that the carbanion formed adjacent to one carboxylate may attack the carbonyl of the other. Thus pyrolysis of calcium acetate affords propanone (acetone) (Scheme 3.62). A similar reaction is found in the pyrolytic cyclization of some dicarboxylic acid anhydrides. Heating Cg and dicarboxylic acids gives cyclopentanones and cyclohexanones... [Pg.94]

The most widely used hardeners are dicarboxylic acid anhydrides (e.g., phthalic acid anhydride, tetrahydro and hexahydrophthalic acid anhydride), long-chain hardener segments with carboxylic end... [Pg.2]

Acylation with dicarboxylic acid anhydrides, e. g. succinic acid anhydride, introduces a carboxyl group into the protein ... [Pg.65]

Since 3-methylenecyclobutane-l,2-dicarboxylic anhydride is easily converted to 3-methyl-2-cydobutene-l,2-dicarboxylic acid, it is an intermediate to a variety of cyclobutenes. The dimethyl ester of 3-methylenecyclobutane-l,2-dicarboxylic acid is also a versatile compound on pyrolysis it gives the substituted allene, methyl butadienoate, and on treatment with amines it gives a cyclobutene, dimethyl 3-methyl-2-cyclobutene-l,2-di-carboxylate. ... [Pg.30]

Activating agents, such as trifluoroacetic anhydride 1,1 -carbonyldiimidazolc carbodiimides sulfonyl, tosyl, and picryl chlorides and a range of phosphorus derivatives can promote direct solution reactions between dicarboxylic acids and diols or diphenols in mild conditions. The activating agents are consumed during the reaction and, therefore, do not act as catalysts. These so-called direct polycondensation or activation polycondensation reactions proceed via the in situ transformation of one of the reactants, generally the carboxylic acid, into a more... [Pg.77]

Sulfur compounds have also been widely studied as activating agents for polyesterification reactions. p-Toluenesulfonyl chloride (tosyl chloride) reacts with DMF in pyridine to form a Vilsmeir adduct which easily reacts with carboxylic acids at 100-120° C, giving highly reactive mixed carboxylic-sulfonic anhydrides.312 The reaction is efficient both for aromatic dicarboxylic acid-bisphenol312 and hydroxybenzoic acid314 polyesterifications (Scheme 2.31). The formation of phenyl tosylates as significant side products of this reaction has been reported.315... [Pg.80]

The scope of this reaction is similar to that of 10-21. Though anhydrides are somewhat less reactive than acyl halides, they are often used to prepare carboxylic esters. Acids, Lewis acids, and bases are often used as catalysts—most often, pyridine. Catalysis by pyridine is of the nucleophilic type (see 10-9). 4-(A,A-Dimethylamino)pyridine is a better catalyst than pyridine and can be used in cases where pyridine fails. " Nonbasic catalysts are cobalt(II) chloride " and TaCls—Si02. " Formic anhydride is not a stable compound but esters of formic acid can be prepared by treating alcohols " or phenols " with acetic-formic anhydride. Cyclic anhydrides give monoesterified dicarboxylic acids, for example,... [Pg.483]

A dispersant that can be used in drilling fluids, spacer fluids, cement slurries, completion fluids, and mixtures of drilling fluids and cement slurries controls the rheologic properties of and enhances the filtrate control in these fluids. The dispersant consists of polymers derived from monomeric residues, including low-molecular-weight olefins that may be sulfonated or phosphonated, unsaturated dicarboxylic acids, ethylenically unsaturated anhydrides, unsaturated aliphatic monocarboxylic acids, vinyl alcohols and diols, and sulfonated or phosphonated styrene. The sulfonic acid, phosphonic acid, and carboxylic acid groups on the polymers may be present in neutralized form as alkali metal or ammonium salts [192,193]. [Pg.311]

PLLA-fr-PCL) multiblock copolymers were prepared from the coupling reaction between the bischloroformates of carboxylated PLLA with diol-terminated PCL in the presence of pyridine [140]. LLA was polymerized with SnOCt2 and 1,6-hexanediol followed by the reaction with succinic anhydride to provide the dicarboxylated PLLA. The carboxyl end groups were subsequently transformed to acid chloride groups by the reaction with thionyl chloride (Scheme 65). As expected, the molecular weight distributions were broad for all samples (1.84 < Mw/Mn < 3.17). [Pg.78]

Hydroxycarbonylation and alkoxycarbonylation of alkenes catalyzed by metal catalyst have been studied for the synthesis of acids, esters, and related derivatives. Palladium systems in particular have been popular and their use in hydroxycarbonylation and alkoxycarbonylation reactions has been reviewed.625,626 The catalysts were mainly designed for the carbonylation of alkenes in the presence of alcohols in order to prepare carboxylic esters, but they also work well for synthesizing carboxylic acids or anhydrides.137 627 They have also been used as catalysts in many other carbonyl-based processes that are of interest to industry. The hydroxycarbonylation of butadiene, the dicarboxylation of alkenes, the carbonylation of alkenes, the carbonylation of benzyl- and aryl-halide compounds, and oxidative carbonylations have been reviewed.6 8 The Pd-catalyzed hydroxycarbonylation of alkenes has attracted considerable interest in recent years as a way of obtaining carboxylic acids. In general, in acidic media, palladium salts in the presence of mono- or bidentate phosphines afford a mixture of linear and branched acids (see Scheme 9). [Pg.188]

Tetrahydrobenzyl alcohol (( )3-cyclohexenene-l-methanol) and 30% aqueous hydrogen peroxide were purchased from Fluka, AG. 3-Cyclohexene-1-carboxylic acid and cis-4-cyclohexene-l,2-dicarboxylic acid were used as purchased from Lancaster Chemical Co. Methyl iodide, acetic anhydride, Oxone (potassium peroxymonosulfate), Aliquot 336 (methyl tri-n-octylammonium chloride), sodium tungstate dihydrate and N,N-dimethylaminopyridine (DMAP) were purchased from Aldrich Chemical Co. and used as received. 3,4-Epoxycyclohexylmethyl 3, 4 -epoxycyclohexane carboxylate (ERL 4221) and 4-vinylcyclohexene dioxide were used as purchased from the Union Carbide Corp. (4-n-Octyloxyphenyl)phenyliodonium hexafluoroantimonate used as a photoinitiator was prepared by a procedure described previously (4). [Pg.83]

Dimethyl-3,5-dimethyl-l//,3//-pyrrolo[l,2-r ][l,3]thiazole-6,7-dicarboxylate 399 (R = H) was prepared from cysteine 396 using the method developed of Padwa et al. <1989JOC644>. The thiazolidine carboxylic acid 397 (R = H), obtained by reaction of the cysteine with formaldehyde, was heated in the presence of acetic anhydride and DMAD to give the sulfide 399 by dipolar cycloaddition of the acetylene to the intermediate dipole 398 (Scheme 59) <2002J(P1)1795>. [Pg.96]

Unsaturated polyesters are prepared through a classical esterification process. Typically, a dihydroxy compound, or mixtures of dihydroxy compounds, are treated with maleic anhydride and/or together with other dicarboxylic acids such as aromatic or aliphatic dicarboxylic acids under elevated temperature to remove the water produced during esterification process. Although various catalysts will catalyze this esterification reaction, there is enough carboxylic acid in the mixture so that it is not necessary to add extra catalyst. [Pg.700]

The above-mentioned concept of the synthesis of carboxylic acid functional hyperbranched polyesteramides is not limited to cyclic anhydrides as building blocks. It can be carried out with diisopropanolamine and any dicarboxylic acid as well. The same ratios as written above and calculated in Scheme 1 have been applied in the synthesis of carboxylic acid functional hyperbranched polyesteramides starting from adipic acid and diisopropanolamine. The first one (ratio 2.3 1) gelates as expected, the second one (ratio adipic acid diisopropanolamine 3.2 1) affords the expected product. Again, with GPC the amount of free adipic acid detected is in good agreement with theory (Fig. 17). [Pg.57]

Miki and Hachiken reported a total synthesis of murrayaquinone A (107) using 4-benzyl-l-ferf-butyldimethylsiloxy-4fT-furo[3,4-f>]indole (854) as an indolo-2,3-quinodimethane equivalent for the Diels-Alder reaction with methyl acrylate (624). 4-Benzyl-3,4-dihydro-lfT-furo[3,4-f>]indol-l-one (853), the precursor for the 4H-furo[3,4-f>]indole (854), was prepared in five steps and 30% overall yield starting from dimethyl indole-2,3-dicarboxylate (851). Alkaline hydrolysis of 851 followed by N-benzylation of the dicarboxylic acid with benzyl bromide and sodium hydride in DMF, and treatment of the corresponding l-benzylindole-2,3-dicarboxylic acid with trifluoroacetic anhydride (TFAA) gave the anhydride 852. Reduction of 852 with sodium borohydride, followed by lactonization of the intermediate 2-hydroxy-methylindole-3-carboxylic acid with l-methyl-2-chloropyridinium iodide, led to the lactone 853. The lactone 853 was transformed to 4-benzyl-l-ferf-butyldimethylsiloxy-4H-furo[3,4- 7]indole 854 by a base-induced silylation. Without isolation, the... [Pg.258]

Miki et al. reported the total synthesis of ellipticine (228) starting from N-benzylindole-2,3-dicarboxylic anhydride (852) (714,715). Reaction of (3-bromo-4-pyridyDtriisopropoxyltitanium (1232) with 852 gave 2-acylindole-3-carboxylic acid 1233 in 86% yield. Decarboxylation and debenzylation of 1233 led to the ketone 1234. Wittig olefination of the ketone 1234, followed by catalytic hydrogenation. [Pg.326]


See other pages where Dicarboxylic acid anhydrides carboxylic acids is mentioned: [Pg.110]    [Pg.60]    [Pg.335]    [Pg.4156]    [Pg.239]    [Pg.270]    [Pg.276]    [Pg.275]    [Pg.134]    [Pg.80]    [Pg.233]    [Pg.280]    [Pg.491]    [Pg.509]    [Pg.188]    [Pg.102]    [Pg.178]    [Pg.183]    [Pg.167]    [Pg.172]    [Pg.173]    [Pg.5]   
See also in sourсe #XX -- [ Pg.15 , Pg.109 ]




SEARCH



Carboxyl anhydride

Carboxylic 1,2-dicarboxylic acid

Carboxylic acid anhydrides

Carboxylic acid anhydrides: aliphatic from 1,2-dicarboxylic acids

Carboxylic acids acid anhydrides

Carboxylic anhydrides

Carboxylic dicarboxylic

Dicarboxylic acids, anhydrides

Dicarboxylic anhydrides

© 2024 chempedia.info