Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons, dehydrogenation

Here M and T represent methylcyclohexane and toluene in the gas phase, and Ttt represents adsorbed toluene. The first step in the above reaction sequence represents the adsorption of methylcyclohexane with subsequent reaction to form toluene, while the second step is the desorption of toluene from the surface. Very likely the first step represents a series of steps involving partially dehydrogenated hydrocarbon molecules or radicals. However, at steady-state conditions the rates of the intermediate steps would all be equal, and the kinetic analysis is, therefore, not complicated by this factor. To account for the near zero-order behavior of the reaction, it was suggested that the active catalyst sites were heavily covered with... [Pg.51]

Figure 8. Proton conductors enable hydrogenating or dehydrogenating hydrocarbons without direct contact with H2 gas.49,50 Reprinted from H. Iwahara. Solid State Ionics, 77 (1995) 289-298. Copyright 1995 with permission from Elsevier. Figure 8. Proton conductors enable hydrogenating or dehydrogenating hydrocarbons without direct contact with H2 gas.49,50 Reprinted from H. Iwahara. Solid State Ionics, 77 (1995) 289-298. Copyright 1995 with permission from Elsevier.
Welch, M. Butadiene via oxidative dehydrogenation. Hydrocarbon Process. 1978,57 (11), 131. [Pg.2271]

The broad peak of Fig. 14 around 1.2 V is attributed to a type II or CH-a intermediate (174,176,178,180 which desorbs cathodically. Type II species probably are partially dehydrogenated hydrocarbons of a structure and their amount depends on the parent hydrocarbon. Propane forms two type II intermediates (180). CH-a and CH-/ (or type III), with the latter nondesorbable either anodically or cathodically a polymeric surface residue is attributed to this species. Type CH-a is assumed to consist of adsorbed alkyl radicals of varying composition, depending on potential. [Pg.257]

Fig. 7.12 Supply of protons makes it possible to hydrogenate or dehydrogenate hydrocarbons without direct contact with Hz gas [562]. FVom Ref. [563]. Fig. 7.12 Supply of protons makes it possible to hydrogenate or dehydrogenate hydrocarbons without direct contact with Hz gas [562]. FVom Ref. [563].
The generic term azulene was first applied to the blue oils obtained by distillation, oxidation, or acid-treatment of many essential oils. These blue colours are usually due to the presence of either guaiazulene or velivazulene. The parent hydrocarbon is synthesized by dehydrogenation of a cyclopentanocycloheptanol or the condensation of cyclopentadiene with glutacondialdehyde anil. [Pg.49]

Benzene was first isolated by Faraday in 1825 from the liquid condensed by compressing oil gas. It is the lightest fraction obtained from the distillation of the coal-tar hydrocarbons, but most benzene is now manufactured from suitable petroleum fractions by dehydrogenation (54%) and dealkylation processes. Its principal industrial use is as a starting point for other chemicals, particularly ethylbenzene, cumene, cyclohexane, styrene (45%), phenol (20%), and Nylon (17%) precursors. U.S. production 1979 2-6 B gals. [Pg.55]

Dehydrogenation (the conversion of alicycllc or hydroaroraatic compounds into their aromatic counterparts by removal of hydrogen and also, in some cases, of other atoms or groups) finds wide appUcation in the determination of structure of natural products of complex hydroaroraatic structure. Dehydrogenation is employed also for the synthesis of polycyclic hydrocarbons and their derivatives from the readily accessible synthetic hydroaroraatic compounds. A very simple example is the formation of p-raethylnaphthalene from a-tetra-lone (which is itself prepared from benzene—see Section IV,143) ... [Pg.947]

Latimer, 1952). Therefore all applied oxidants are, in thermodynamic terms, able to oxidize or to dehydrogenate all hydrocarbons and all oxidizable functional groups of organic molecules. [Pg.116]

Oxidation of carbon side-chains has resulted in the synthesis of dithiazolyl ketone (82) and thiazolyl phenyl ketone (83). The hydrocarbon chain can also be dehydrogenated in acetic acid in the presence of... [Pg.341]

Acetaldehyde, first used extensively during World War I as a starting material for making acetone [67-64-1] from acetic acid [64-19-7] is currendy an important intermediate in the production of acetic acid, acetic anhydride [108-24-7] ethyl acetate [141-78-6] peracetic acid [79-21 -0] pentaerythritol [115-77-5] chloral [302-17-0], glyoxal [107-22-2], aLkylamines, and pyridines. Commercial processes for acetaldehyde production include the oxidation or dehydrogenation of ethanol, the addition of water to acetylene, the partial oxidation of hydrocarbons, and the direct oxidation of ethylene [74-85-1]. In 1989, it was estimated that 28 companies having more than 98% of the wodd s 2.5 megaton per year plant capacity used the Wacker-Hoechst processes for the direct oxidation of ethylene. [Pg.48]

Although the selectivity of isopropyl alcohol to acetone via vapor-phase dehydrogenation is high, there are a number of by-products that must be removed from the acetone. The hot reactor effluent contains acetone, unconverted isopropyl alcohol, and hydrogen, and may also contain propylene, polypropylene, mesityl oxide, diisopropyl ether, acetaldehyde, propionaldehyde, and many other hydrocarbons and carbon oxides (25,28). [Pg.96]

Butadiene Separation. Solvent extraction is used in the separation of butadiene (qv) [106-99-0] from other C-4 hydrocarbons in the manufacture of synthetic mbber. The butadiene is produced by catalytic dehydrogenation of butylene and the Hquid product is then extracted using an aqueous cuprammonium acetate solution with which the butadiene reacts to form a complex. Butadiene is then recovered by stripping from the extract. Distillation is a competing process. [Pg.79]

Methyl /-Butyl Ether. MTBE is produced by reaction of isobutene and methanol on acid ion-exchange resins. The supply of isobutene, obtained from hydrocarbon cracking units or by dehydration of tert-huty alcohol, is limited relative to that of methanol. The cost to produce MTBE from by-product isobutene has been estimated to be between 0.13 to 0.16/L ( 0.50—0.60/gal) (90). Direct production of isobutene by dehydrogenation of isobutane or isomerization of mixed butenes are expensive processes that have seen less commercial use in the United States. [Pg.88]

Reactions. The most important commercial reaction of cyclohexane is its oxidation (ia Hquid phase) with air ia the presence of soluble cobalt catalyst or boric acid to produce cyclohexanol and cyclohexanone (see Hydrocarbon oxidation Cyclohexanoland cyclohexanone). Cyclohexanol is dehydrogenated with 2iac or copper catalysts to cyclohexanone which is used to manufacture caprolactam (qv). [Pg.407]

Quantitative estimation of cyclohexane in the presence of benzene and aUphatic hydrocarbons may be accompHshed by a nitration-dehydrogenation method described in Reference 61. The mixture is nitrated with mixed acid and under conditions that induce formation of the soluble mononitroaromatic derivative. The original mixture of hydrocarbons then is dehydrogenated over a platinum catalyst and is nitrated again. The mononitro compounds of the original benzene and the benzene formed by dehydrogenation of the cyclohexane dissolve in the mixed acid. The aUphatic compound remains unattacked and undissolved. This reaction may be carried out on a micro scale. [Pg.409]

Butadiene. Although butadiene was produced in the United States in the eady 1920s, it was not until the start of Wodd War 11 that significant quantities were produced to meet the war effort. A number of processes were investigated as part of the American Synthetic Rubber Program. Catalytic dehydrogenation of / -butenes and / -butanes (Houdry process) and thermal cracking of petroleum hydrocarbons were chosen (12). [Pg.494]

In the petroleum (qv) industry hydrogen bromide can serve as an alkylation catalyst. It is claimed as a catalyst in the controlled oxidation of aHphatic and ahcycHc hydrocarbons to ketones, acids, and peroxides (7,8). AppHcations of HBr with NH Br (9) or with H2S and HCl (10) as promoters for the dehydrogenation of butene to butadiene have been described, and either HBr or HCl can be used in the vapor-phase ortho methylation of phenol with methanol over alumina (11). Various patents dealing with catalytic activity of HCl also cover the use of HBr. An important reaction of HBr in organic syntheses is the replacement of aHphatic chlorine by bromine in the presence of an aluminum catalyst (12). Small quantities of hydrobromic acid are employed in analytical chemistry. [Pg.291]

The pattern of commercial production of 1,3-butadiene parallels the overall development of the petrochemical industry. Since its discovery via pyrolysis of various organic materials, butadiene has been manufactured from acetylene as weU as ethanol, both via butanediols (1,3- and 1,4-) as intermediates (see Acetylene-DERIVED chemicals). On a global basis, the importance of these processes has decreased substantially because of the increasing production of butadiene from petroleum sources. China and India stiU convert ethanol to butadiene using the two-step process while Poland and the former USSR use a one-step process (229,230). In the past butadiene also was produced by the dehydrogenation of / -butane and oxydehydrogenation of / -butenes. However, butadiene is now primarily produced as a by-product in the steam cracking of hydrocarbon streams to produce ethylene. Except under market dislocation situations, butadiene is almost exclusively manufactured by this process in the United States, Western Europe, and Japan. [Pg.347]

Dehydrogenation of isobutane to isobutylene is highly endothermic and the reactions are conducted at high temperatures (535—650°C) so the fuel consumption is sizeable. Eor the catalytic processes, the product separation section requires a compressor to facHitate the separation of hydrogen, methane, and other light hydrocarbons from-the paraffinic raw material and the olefinic product. An exceHent overview of butylenes is avaHable (81). [Pg.368]


See other pages where Hydrocarbons, dehydrogenation is mentioned: [Pg.43]    [Pg.853]    [Pg.141]    [Pg.205]    [Pg.311]    [Pg.359]    [Pg.40]    [Pg.19]    [Pg.104]    [Pg.392]    [Pg.1466]    [Pg.4940]    [Pg.98]    [Pg.859]    [Pg.43]    [Pg.853]    [Pg.141]    [Pg.205]    [Pg.311]    [Pg.359]    [Pg.40]    [Pg.19]    [Pg.104]    [Pg.392]    [Pg.1466]    [Pg.4940]    [Pg.98]    [Pg.859]    [Pg.728]    [Pg.734]    [Pg.133]    [Pg.212]    [Pg.409]    [Pg.409]    [Pg.214]    [Pg.506]    [Pg.52]    [Pg.481]    [Pg.482]    [Pg.41]    [Pg.116]    [Pg.340]   
See also in sourсe #XX -- [ Pg.308 ]

See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Alcohols dehydrogenation, hydrocarbons

Alicyclic hydrocarbons dehydrogenation

Alkylaromatic Hydrocarbons Dehydrogenation

Aromatic hydrocarbons, dehydrogenative

Aromatic hydrocarbons, dehydrogenative couplings

Dehydrogenation light hydrocarbons

Dehydrogenation of aliphatic hydrocarbon

Dehydrogenation, of hydrocarbons

Hydrocarbon processes dehydrogenation

Hydrocarbon reactions cyclohexane dehydrogenation

Hydrocarbons oxidative dehydrogenation

Light hydrocarbons oxidative dehydrogenation

Naphthene hydrocarbon dehydrogenation

Oxidative dehydrogenation of hydrocarbons

© 2024 chempedia.info