Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Defects, importance

Fatal hereditary disorder that typically presents in the neonatal period. Clinical features include an array of hepatic, renal and neurological dysfunctions. Patients with Zellweger syndrome rarely survive the first year of life. The disease is caused by mutations in the Pex proteins leading to an defective import of peroxisomal matrix proteins and consequently to a loss of most peroxisomal metabolic pathways. [Pg.1483]

Malinin Tl, Carpenter EM, Temple HT. Particulate bone allograft incorporation in regeneration of osseons defects importance of particle sizes. Open Orthop J 2007 1 19-24. [Pg.500]

The high level of amplitude (> 60 dB) of these AE events indicated the presence of a evolving defect. After this proof test, the vessel was pressurized until burst. All along this test the activity of acoustic emission was very important, and divided in two phasis. [Pg.55]

Note Conversely, it is important to emphasize that a lack of phase inversion between the signals of two superimposed echoes along the depth axis is not necessarily an evidence that the defect is volumetric (diffraction effect on a planar defect could miss if the geometry of the tips are not favorable). [Pg.178]

The choice of the vector d is very important for the exploitation of cooccurrence matrix. For segmentation operation, d will be calculated with the result that could separate the noise of defects. We will have therefore to research transitions to frontiers, that is to say couples (i, j) such that i is an intensity linked to the noise and j an intensity linked to the defect. [Pg.234]

Since the geometry of the wheel is also displayed during this type of test, it is important to distinguish between defects and geometrical influences. The tester can easily and reliably make these distinctions, if the distortions of the wheel s geometry and the display of the defects caused by the display of the test system are not to great. [Pg.307]

One more experimental result, which is important for PT is as follows. Only polar liquids fill conical capillaries from both sides. We used various penetrants to fill conical defects Pion , LZh-6A , LZhT , LUM-9 etc. It was established that only the penetrants containing polar liquid as the basic liquid component (various alcohols, water and others) manifest two-side filling phenomenon. This result gives one more confirmation of the physical mechanism of the phenomenon, based on liquid film flow, because the disjoining pressure strongly depends just on the polarity of a liquid. [Pg.618]

For the case of electro-magnets, inclusions detection in welds situated at 1-2 mm of depth is very important, because the reluctance variation between the two mediums is not important, and thus the detection of this type of defect is very difficult. It will be sufficient to be in optimal conditions to eliminate this problem. [Pg.637]

For the revelation of the small width particle, reveler products of fine particles give good results (1-2 micron) and inversely for defects of important dimensions (10-50 micron). [Pg.638]

A particular attention must be given to the examination of spectra, because they can be an error source. The magnetic spectrum presence is very important, because it conditions the testing sanction. Generally we proceed to an identification of the real defect nature which has lead to the formation of the spectrum... [Pg.638]

Insufficient information about the properties, layout pattern of small defects, potential for their growth in time, usually leads either to an unjustified rejection (repair) or to underestimation of the importance of the defect and, as aconsequence, construction failure. Use of automated computerised means of control allows safe service of the old constructions, periodically repeating the UT and monitoring the development of discontinuities in the metal. The main idea of such policy is periodical UT of development of discontinuities or, in a more general form, monitoring of the metal condition. [Pg.791]

Often repair of the found defects is extremely undesirable. Therefore, for discontinuities which are potentially hazardous, it is very important to have a onfirmation of their stability. In this case monitoring of potentially hazardous discontinuities is well supported by automated UT systems and based on the comparative analysis results, the actual data from examination of a section of the welded joint of a (hydrogen) separator are given in Figures 5,6. [Pg.791]

Up to now the Reference Block Method and the DGS-Method are world wide the most important techniques for evaluating defect signals in manual Ultrasonic Testing. Even today, individual national standards refer to either one of these two echo evaluation techniques. However, both reflected echo signals from natural defects are compared with an echo from a known reference reflector at the same distance. The result of the evaluation is either... [Pg.812]

Therefore, it is important for judging the performance and the safety of the product to understand the size of the defect and the position by the ultrasonic method quantitatively. And, the reliability of the product improves further by feeding back this ultrasonic wave information to the manufacturing process. [Pg.833]

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

The discovery of perfect geodesic dome closed structures of carbon, such as C o has led to numerous studies of so-called Buckminster fullerene. Dislocations are important features of the structures of nested fullerenes also called onion skin, multilayered or Russian doll fullerenes. A recent theoretical study [118] shows that these defects serve to relieve large inherent strains in thick-walled nested fullerenes such that they can show faceted shapes. [Pg.278]

Qualitative examples abound. Perfect crystals of sodium carbonate, sulfate, or phosphate may be kept for years without efflorescing, although if scratched, they begin to do so immediately. Too strongly heated or burned lime or plaster of Paris takes up the first traces of water only with difficulty. Reactions of this type tend to be autocat-alytic. The initial rate is slow, due to the absence of the necessary linear interface, but the rate accelerates as more and more product is formed. See Refs. 147-153 for other examples. Ruckenstein [154] has discussed a kinetic model based on nucleation theory. There is certainly evidence that patches of product may be present, as in the oxidation of Mo(lOO) surfaces [155], and that surface defects are important [156]. There may be catalysis thus reaction VII-27 is catalyzed by water vapor [157]. A topotactic reaction is one where the product or products retain the external crystalline shape of the reactant crystal [158]. More often, however, there is a complicated morphology with pitting, cracking, and pore formation, as with calcium carbonate [159]. [Pg.282]


See other pages where Defects, importance is mentioned: [Pg.253]    [Pg.231]    [Pg.281]    [Pg.82]    [Pg.263]    [Pg.78]    [Pg.262]    [Pg.192]    [Pg.253]    [Pg.231]    [Pg.281]    [Pg.82]    [Pg.263]    [Pg.78]    [Pg.262]    [Pg.192]    [Pg.26]    [Pg.97]    [Pg.115]    [Pg.160]    [Pg.226]    [Pg.236]    [Pg.306]    [Pg.362]    [Pg.513]    [Pg.699]    [Pg.723]    [Pg.728]    [Pg.735]    [Pg.830]    [Pg.947]    [Pg.467]    [Pg.562]    [Pg.928]    [Pg.1686]    [Pg.1704]    [Pg.2334]    [Pg.2527]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Classification of some important defect structures and diffraction contrast in catalysis

© 2024 chempedia.info