Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexene stereochemistry

Diacetoxylation of various conjugated dienes including cyclic dienes has been extensively studied. 1,3-Cyclohexadiene was converted into a mixture of isomeric l,4-diacetoxy-2-cyclohexenes of unknown stereochemistry[303]. The stereoselective Pd-catalyzed 1,4-diacetoxylation of dienes is carried out in AcOH in the presence of LiOAc and /or LiCI and beiizoquinone[304.305]. In the presence of acetate ion and in the absence of chloride ion, /rau.v-diacetox-ylation occurs, whereas addition of a catalytic amount of LiCl changes the stereochemistry to cis addition. The coordination of a chloride ion to Pd makes the cis migration of the acetate from Pd impossible. From 1,3-cyclohexadiene, trans- and ci j-l,4-diacetoxy-2-cyclohexenes (346 and 347) can be prepared stereoselectively. For the 6-substituted 1,3-cycloheptadiene 348, a high diaster-eoselectivity is observed. The stereoselective cij-diacetoxylation of 5-carbo-methoxy-1,3-cyclohexadiene (349) has been applied to the synthesis of dl-shikimic acid (350). [Pg.68]

It is possible to prepare 1-acetoxy-4-chloro-2-alkenes from conjugated dienes with high selectivity. In the presence of stoichiometric amounts of LiOAc and LiCl, l-acetoxy-4-chloro-2-hutene (358) is obtained from butadiene[307], and cw-l-acetoxy-4-chloro-2-cyclohexene (360) is obtained from 1.3-cyclohexa-diene with 99% selectivity[308]. Neither the 1.4-dichloride nor 1.4-diacetate is formed. Good stereocontrol is also observed with acyclic diene.s[309]. The chloride and acetoxy groups have different reactivities. The Pd-catalyzed selective displacement of the chloride in 358 with diethylamine gives 359 without attacking allylic acetate, and the chloride in 360 is displaced with malonate with retention of the stereochemistry to give 361, while the uncatalyzed reaction affords the inversion product 362. [Pg.69]

The wM-diacetate 363 can be transformed into either enantiomer of the 4-substituted 2-cyclohexen-l-ol 364 via the enzymatic hydrolysis. By changing the relative reactivity of the allylic leaving groups (acetate and the more reactive carbonate), either enantiomer of 4-substituted cyclohexenyl acetate is accessible by choice. Then the enantioselective synthesis of (7 )- and (S)-5-substituted 1,3-cyclohexadienes 365 and 367 can be achieved. The Pd(II)-cat-alyzed acetoxylactonization of the diene acids affords the lactones 366 and 368 of different stereochemistry[310]. The tropane alkaloid skeletons 370 and 371 have been constructed based on this chemoselective Pd-catalyzed reactions of 6-benzyloxy-l,3-cycloheptadiene (369)[311]. [Pg.70]

Benzene-sensitized photolysis of methyl 3-cyclohexene-1-carboxylate in acetic acid leads to addition of acetic acid to the double bond. Only the trans adducts are formed. What factor(s) is (are) responsible for the reaction stereochemistry Which of the two possible addition products, A or B, do you expect to be the major product ... [Pg.784]

Problem 7.3 What product would you expect to obtain from addition of Cl2 to 1,2-dimethyl-cyclohexene Show the stereochemistry of the product. [Pg.218]

One of the most useful features of the Diels-Alder reaction is that it isstaeo-specific, meaning that a single product stereoisomer is formed. Furthermore, the stereochemistry of the reactant is maintained. If we carry out the cycloaddition with a cis dienophile, such as methyl ds-2-butenoate, only the cis-substituted cyclohexene product is formed. With methyl tmtts-2-butenoate, only thetrans-substituted cyclohexene product is formed. [Pg.494]

Vinyl radicals can also participate in 6-exo cyclizations. In pioneering work, Stork and his group at Columbia University showed that stereoisomeric vinyl bromides 20 and 21 (see Scheme 3) can be converted to cyclohexene 22.7 The significance of this finding is twofold first, the stereochemistry of the vinyl bromide is inconsequential since both stereoisomers converge upon the same product and second, the radical cyclization process tolerates electrophilic methoxycarbonyl groups. The observation that the stereochemistry of the vinyl bromide is inconsequential is not surprising because the barrier for inversion of most vinyl radicals is very low.8 This important feature of vinyl radical cyclization chemistry is also exemplified in the conversion of vinyl bromide 23 to tricycle 24, the key step in Stork s synthesis of norseychellanone (25) (see Scheme 4).9 As in... [Pg.385]

Conversion of epoxides into /3-hydroxy isocyanides—preparation of trans-2-isocyanocyclohexanol, using TMSCN to open cyclohexene oxide with trans stereochemistry, followed by KF/MeOH cleavage of the intermediate silyl ether. [Pg.163]

The same conclusion was drawn from the results obtained from careful studies of the stereochemistry of the glycol products formed on oxidation of cyclohexene with thallium(III) acetate 3, 83). When dry acetic acid was employed as solvent the product was mainly the tranr-diacetate (XI) in moist acetic acid, however, the mixture of glycol mono- (XII) and diacetates (XIII) which was obtained was mainly cis. These results have been interpreted in terms of initial trans oxythallation, ring inversion. [Pg.181]

The cyclohexene is easy to see so that the Diels-Alder disconnection follows. The stereochemistry of the double bonds comes from two separate arguments the dienophile (a in 5) must be trarjs as the two substituents it produces in (4) are also trans. The diene must be all ain or all trann since the two substituents it produces in (4) are ois (both down). The all tvan, is needed because endo approach (6) is preferred. [Pg.422]

The stereochemistry of addition of hydrogen halides to alkenes depends on the structure of the alkene and also on the reaction conditions. Addition of hydrogen bromide to cyclohexene and to E- and Z-2-butene is anti.6 The addition of hydrogen chloride to 1 -methylcyclopentene is entirely anti when carried out at 25° C in nitromethane.7... [Pg.291]

On the basis of the mechanistic pattern for oxymercuration-demercuration, predict the structure and stereochemistry of the alcohol(s) to be expected by application of the reaction to each of the following substituted cyclohexenes. [Pg.360]

In considering the retrosynthetic analysis of juvabione, two factors draw special attention to the bond between C(4) and C(7). First, this bond establishes the stereochemistry of the molecule. The C(4) and C(7) carbons are stereogenic centers and their relative configuration determines the diastereomeric structure. In a stereocontrolled synthesis, it is necessary to establish the desired stereochemistry at C(4) and C(7). The C(4)-C(7) bond also connects the side chain to the cyclohexene ring. As a cyclohexane derivative is a logical candidate for one key intermediate, the C(4)-C(7) bond is a potential bond disconnection. [Pg.1174]

Reactions of 1 with epoxides involve some cycloaddition products, and thus will be treated here. Such reactions are quite complicated and have been studied in some depth.84,92 With cyclohexene oxide, 1 yields the disilaoxirane 48, cyclohexene, and the silyl enol ether 56 (Eq. 29). With ( )- and (Z)-stilbene oxides (Eq. 30) the products include 48, ( > and (Z)-stilbenes, the E- and Z-isomers of silyl enol ether 57, and only one (trans) stereoisomer of the five-membered ring compound 58. The products have been rationalized in terms of the mechanism detailed in Scheme 14, involving a ring-opened zwitterionic intermediate, allowing for carbon-carbon bond rotation and the observed stereochemistry. [Pg.262]

For example, the sensitized additions of dimethyl maleate and fuma-rate to cyclohexene, 14°) Eqs. 53 and 54, are quoted 79> as examples of concerted [xia+Ws] and [2 +2 ] reactions respectively. Since three other cycloadducts with different stereochemistry are formed, comprising about one-third of the product mixture, and since both... [Pg.172]

Similarly, to explain the stereochemistry of hydrogenation of dialkyl-cyclohexenes (other than 1,2 derivatives) at high pressures of hydrogen. [Pg.148]

A similar reaction pathway was found for the Sn2 substitution of an epoxide with a lithium cuprate cluster [124]. In contrast to that in the MeBr reaction, the stereochemistry of the electrophilic carbon center is already inverted in the transition state, providing the reason for the preferred trans-diaxial epoxide-opening widely observed in synthetic studies. The TS for the Sn2 reaction of cyclohexene oxide is shown in Eq. 10.12. [Pg.332]

The structure, and the trans-relative stereochemistry, of dihydroarcyriarubin B (352) was confirmed by comparison of the product obtained from arcyriarubin B (350) by palladium-catalyzed hydrogen transfer from cyclohexene in boiling xylene. Under these conditions, only the thermodynamically more stable trans-diastereomer was formed. Based on these data, and the spectroscopic comparison with the hydrogenation product of arcyriarubin B (350), the structure 352 was assigned to dihydroarcyriarubin B (252) (Scheme 2.90). [Pg.143]

Cyclohexene does not polymerize by either route except when it is part of a bicyclic structure as in norbornene. Stereochemistry in the ROMP of norbomene is complicated since the polymer, LXVI in Sec. 7-8, has possibilities of isomerism at both the ring and the double bond. Most polymerizations by the typical ROMP initiators yield cis stereochemistry at the cyclopentane ring with varying amounts of cis and trans placements at the double bond [Ivin, 1987]. Metallocene initiators yield predominantly double-bond polymerization with 1,2-placement [Janiak and Lassahn, 2001]. [Pg.683]

Azadienes of this sort were studied simultaneously by Mariano et al., who reacted mixtures of (1 ,3 ) and (1E, 3Z)-l-phenyl-2-aza-l,3-pentadiene 275 with several electron-rich alkenes, e.g., enamines and enol ethers (85JOC5678) (Scheme 61). They found the (l ,3 )-stereoisomer to be reactive in this process affording stereoselectively endo 276 or exo 277 piperidine cycloadducts in 5-39% yield, after reductive work-up with sodium borohydride. The stereochemistry of the resulting adducts is in agreement with an endo transition state in the case of dienophiles lacking a cis alkyl substituent at the /8-carbon (n-butyl vinyl ether, benzyl vinyl ether, and 1-morpholino cyclopentene), whereas an exo transition state was involved when dihydropyrane or c/s-propenyl benzyl ether were used. Finally, the authors reported that cyclohexene and dimethyl acetylenedi-carboxylate failed to react with these unactivated 2-azadienes. [Pg.54]

The stereochemistry of the dienophile is preserved in the product, the substituted cyclohexene. This fact is consistent with a one-step concerted mechanism. [Pg.196]

The stereochemistry of the Prins reaction is complex. In the transformation of cyclohexene and 2-butenes anti stereoselective addition was observed,67-69 whereas syn addition of two formaldehyde units takes place in the formation of 1,3-dioxanes from substituted styrenes.70 Most of the transformations are, however, nonstereo-selective,71 72 accounted for by carbocation 18. [Pg.229]

The overall course of reaction depends on the relative rate constants for the various secondary radical processes. Aliphatic ketones are often photoreduced to secondary alcohols (4.121, but although there are interesting features in the stereochemistry of the reduction, the method is not a worthwhile alternative to thermal reduction using hydride reagents, except in cases where the substrate is sensitive to basic conditions. Photoaddition of methanol is promoted in the presence of titaniurnfiv) chloride, both for acyclic and cyclic (4.33) ketones the titanium involvement probably starts in the early steps of the reaction, but the detailed mechanism is not known. Addition may also be a major pathway when cyclohexene is used as hydrogen source (4.341 unlike many other simple alkenes, cydohexene does not readily give oxetanes by photocycloaddition (see p. 126). [Pg.116]

Most of the studies to date have employed either palladium [222—229] or platinum [220,224,226,228—235], commonly as Adams reduced platinum oxide, although nickel [228,236,237], rhodium [238,239], ruthenium [239], iridium [239], iron [237] and tungsten [237] have also been used. Many of these studies have been concerned with the stereochemistry of the hydrogenation of disubstituted cycloalkenes. Table 32 shows some typical results for the platinum- and palladium-catalysed hydrogenation of disubstituted cyclohexenes. Table 33 shows comparative results for the hydrogenation of 1,4-dialkylcyclohexenes over palladium, platinum and rhodium catalysts. [Pg.95]


See other pages where Cyclohexene stereochemistry is mentioned: [Pg.354]    [Pg.304]    [Pg.50]    [Pg.983]    [Pg.190]    [Pg.57]    [Pg.459]    [Pg.183]    [Pg.189]    [Pg.180]    [Pg.597]    [Pg.123]    [Pg.525]    [Pg.202]    [Pg.294]    [Pg.667]    [Pg.184]    [Pg.577]   
See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.707 ]

See also in sourсe #XX -- [ Pg.8 , Pg.707 ]

See also in sourсe #XX -- [ Pg.8 , Pg.707 ]




SEARCH



Cyclohexenes stereochemistry of hydrogen halide addition

© 2024 chempedia.info