Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclodextrin columns, 270

Fig. 2. Chromatogram showing (a) the Ic separation of A, (+) (T)-(l-ferrocenyl-ethyl)thioethanol B, (+) 1-ferrocenyl-l-methoxyethane and C, (+) 1-mthenocenylethanol, on a 25-cm P-cyclodextrin column (see Table 2), and (b) the potential use of a P-cyclodextrin column to determine optical purity... Fig. 2. Chromatogram showing (a) the Ic separation of A, (+) (T)-(l-ferrocenyl-ethyl)thioethanol B, (+) 1-ferrocenyl-l-methoxyethane and C, (+) 1-mthenocenylethanol, on a 25-cm P-cyclodextrin column (see Table 2), and (b) the potential use of a P-cyclodextrin column to determine optical purity...
Figure 3.7 [continued) (b) Chromatograms of (iii) the dichloromethane extract of strawberry fruit yoghurt analysed with an apolar primary column, with the heart-cut regions indicated, and (iv) a non-racemic mixture of y-deca-(Cio) and 7-dodeca-Cj2 lactones isolated by heart-cut transfer, and separated by using a chiral selective modified cyclodextrin column. Reproduced from A. Mosandl, et al J. High Resol. Chromatogr. 1989, 12, 532 (39f. [Pg.67]

Figure 10.1 Analysis of racemic 2,5-dimethyl-4-hydroxy-3[2H]-furanone (1) obtained from a strawbeny tea, flavoured with the synthetic racemate of 1 (natural component), using an MDGC procedure (a) dichloromethane extract of the flavoured strawbeny tea, analysed on a Carbowax 20M pre-column (60 m, 0.32 mm i.d., 0.25 p.m film thickness earner gas H2, 1.95 bar 170 °C isothermal) (b) chirospecific analysis of (1) from the sti awbeny tea exti act, ti ansfened foi stereoanalysis by using a pemiethylated /3-cyclodextrin column (47 m X 0.23 mm i.d. canier gas H2, 1.70 bar 110 °C isothemial). Reprinted from Journal of High Resolution Chromatography, 13, A. Mosandl et al., Stereoisomeric flavor compounds. XLIV enantioselective analysis of some important flavor molecules , pp. 660-662, 1990, with permission from Wiley-VCH. Figure 10.1 Analysis of racemic 2,5-dimethyl-4-hydroxy-3[2H]-furanone (1) obtained from a strawbeny tea, flavoured with the synthetic racemate of 1 (natural component), using an MDGC procedure (a) dichloromethane extract of the flavoured strawbeny tea, analysed on a Carbowax 20M pre-column (60 m, 0.32 mm i.d., 0.25 p.m film thickness earner gas H2, 1.95 bar 170 °C isothermal) (b) chirospecific analysis of (1) from the sti awbeny tea exti act, ti ansfened foi stereoanalysis by using a pemiethylated /3-cyclodextrin column (47 m X 0.23 mm i.d. canier gas H2, 1.70 bar 110 °C isothemial). Reprinted from Journal of High Resolution Chromatography, 13, A. Mosandl et al., Stereoisomeric flavor compounds. XLIV enantioselective analysis of some important flavor molecules , pp. 660-662, 1990, with permission from Wiley-VCH.
Figure 10.2 MDGC-MS differentiation between the enantiomers of theaspiranes in an aglycone fraction from puiple passion fruit DB5 pre-column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 0.66 ml/min oven temperature, 60-300 °C at 10 °C/min with a final hold of 25 min) permethylated /3-cyclodextrin column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 1.96 ml/min 80 °C isothermal for 20 min and then programmed to 220 °C at 2 °C/min). Reprinted from Journal of High Resolution Chromatography, 16, G. Full et al., MDGC- MS a powerful tool for enantioselective flavor analysis , pp. 642-644, 1993, with permission from Wiley-VCH. Figure 10.2 MDGC-MS differentiation between the enantiomers of theaspiranes in an aglycone fraction from puiple passion fruit DB5 pre-column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 0.66 ml/min oven temperature, 60-300 °C at 10 °C/min with a final hold of 25 min) permethylated /3-cyclodextrin column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 1.96 ml/min 80 °C isothermal for 20 min and then programmed to 220 °C at 2 °C/min). Reprinted from Journal of High Resolution Chromatography, 16, G. Full et al., MDGC- MS a powerful tool for enantioselective flavor analysis , pp. 642-644, 1993, with permission from Wiley-VCH.
Phenylthiocarbamoyl derivatives of 18 chiral amino acids were separated on a C8 column connected in series to a phenylcarbamoylated (3-cyclodextrin column (Iida et al., 1997). The Cg column separated the derivatized amino acids from one another entering the chiral column. Under this configuration several enantiomers of adjacent amino acids coeluted resulting in poor resolution. However, this configuration was successful in determining the amino acid sequence and chirality of the amino acids in a D-amino acid containing peptide. [Pg.334]

Like plasma and urine, matrixes from plant or environmental sources contain a vast diversity of components. Thus, achiral-chiral LC-LC is also useful for analysis involving samples from these sources. Stalcup et al. (1991) studied the enantiomeric purity of scopolamine extracted from Datura sanguinea in both homogenized plant leaves and commercial extracts. A reverse-phase separation on a C j g column separated the scopolamine from other alkaloid and matrix components while the enantiomeric separation (also in the reverse-phase mode) was carried out on two coupled [3-cyclodextrin columns or a single acetylated (3-cyclodextrin column. The single... [Pg.334]

All aldehydes used in the experiment were freshly distilled or washed with aqueous NaHC03 solution to minimize the amount of free acid. Chiral HPLC was performed using a chiral OJ-H column (0.46 cm x 25 cm, Daicel industries) with a water 717 auto sampler and a UV-vis detector (254 nm). The eluting solvent used was different ratios of hexane and 2-propanol. Chiral gas chromatography analysis was performed in a Shimadzu auto sampler with cyclodextrins columns as chiral stationary phase (fused-silica capillary column, 30 m X 0.25 mm x 0.25 gm thickness, /3-Dex-120 and /3-Dex-325 from Supelco, USA) using He as a carrier gas (detector temperature 230 °C and injection temperature 220 °C). [Pg.272]

The optical purity was determined by chiral GC, using a 20 % permethylated cyclodextrin column, after esterification of the pure product with (CF3C0)20 in dry CH2CI2 (65 °C isothermal carrier gas N2, pressure 70 kPa). T r = 26.305 min (>99%, (3R,45)-3-allyl-4-hydroxy-2-pentanone). The enantiomeric purity was estimated to be >99 % and the diastereomeric purity >99 %. [Pg.279]

Complexes of unsymmetrically substituted conjugated dienes are chiral. Racemic planar chiral complexes are separated into their enantiomers 84 and 85 by chiral HPLC on commercially available /f-cyclodextrin columns and used for enantioseletive synthesis [25]. Kinetic resolution was observed during the reaction of the meso-type complex 86 with the optically pure allylboronate 87 [26], The (2R) isomer reacted much faster with 87 to give the diastereomer 88 with 98% ee. The complex 88 was converted to 89 by the reaction of meldrum acid. Stereoselective Michael addition of vinylmagnesium bromide to 89 from the opposite side of the coordinated Fe afforded 90, which was converted to 91 by acetylation of the 8-OH group and displacement with EtjAl. Finally, asymmetric synthesis of the partial structure 92 of ikarugamycin was achieved [27],... [Pg.362]

K. D. Sternitzki, T. Y. Fan, and D. L. Dunn, High-performance liquid chromatographic determination of pilocarpine hydrochloride and its degradation products using a /3-cyclodextrin column, J. Chromatogr., 589 159 (1992). [Pg.240]

Racemic l-dimethylaminopropan-2-ol (18) was acylated with propanoyl chloride, and the reaction product was analyzed by gas chromatography (GC). The resultant (R)- and (5)-esters 19 (R1 = COEt) were resolved by GC using an a-cyclodextrin column. Reaction of the racemic alcohol 18 was then carried out in the presence of Novozyme 435 and vinyl propanoate, and the reaction was followed by GC. After 4 hours the reaction was approximately 2% complete and the ee of the propanoate ester 19 (R1 = COEt) was 95.9%. After 88 hours the conversion had reached 50% and the ee was still 95.6%. The remarkable specificity of Novozyme 435 for the (/O-amino alcohol 1 A )-18 was evident because even after 3.5 days reaction time, only a very small amount of the (5)-ester was detected. The reaction could be scaled up thus, 1 kg of the racemic amino alcohol 18 was treated with vinyl propanoate (0.5 equivalents) and Novozyme 435 (3% by weight). After 3 days, both optically active products were isolated by distillation at reduced pressure. The (5)-amino alcohol (.V)-18 was recovered in 45% yield, which compared favorably with a yield of 32% for resolution on a small scale. The (R)-propanoate 19 (R1 = COEt) distilled as a colorless oil in 36% yield — slightly higher than that obtained from the small-scale resolution. The overall recovery was 81% from the scaled up reaction. [Pg.565]

As a further test of the etched open tubular approach for the analysis of optical isomers, another column was fabricated based on the selector naphthylethylamine that had been attached to porous silica by the silanization/hydrosilation method for use in HPLC [70]. As in the HPLC experiments, this column was best suited for the resolution of the optical isomers of dinitrobenzoyl methyl esters of amino acids. The best separation (a = 1.14) was obtained for the alanine derivative. In addition, the peak symmetry and efficiency for the naphthylethylamine column was significantly better than that obtained on the cyclodextrin column. However, as shown in HPLC experiments, changes in the amino acid moiety (replacing alanine with valine, etc.) often results in a loss of chiral resolution. In the case of optical isomers, the separation mechanism in HPLC and CEC modes is identical since only interaction between the solute and the bonded phase can result in resolution of the enantiomers. [Pg.277]

Numbers represent the volume percentage of methanol to water. c A 25-cm 3-cyclodextrin column was used to generate these data. [Pg.288]

The effect of temperature, and of temperature and pH on the retention of a selected group of compounds using a beta-cyclodextrin column was studied. The results indicated that a plot of Ink vs. 1/T gave linear relationships for anthraquinone, methyl anthraquinone, ethyl anthraquinone, naphthalene and biphenyl using a mobile phase of methanol/water. However, a non linear relationship was observed for a selected group of dipeptides employing a mobile phase of methanol/ammonium acetate at the following pH s 1, 5.5 and 7. The retention times decreased with an increase in the temperature of the column except that for certain dipeptides the retention times increased. The separation factor (a) values decreased by approximately 10 with increase in column temperature from 25°C to 77°C. [Pg.260]

Figure 1. Effect of temperature on the capacity factor of naphthalene (—o—) and biphenyl (-0-) using a 6 cyclodextrin column, ii.6 x 100 mm, and a mobile phase of methanol/water at a flow rate of 1 ml/min. Figure 1. Effect of temperature on the capacity factor of naphthalene (—o—) and biphenyl (-0-) using a 6 cyclodextrin column, ii.6 x 100 mm, and a mobile phase of methanol/water at a flow rate of 1 ml/min.
Table IV Effect of column temperature on the retention of dipeptides on a B cyclodextrin column using a mobile phase of 10 Me0H/0.1 M ammonium acetate, pH 5.5... Table IV Effect of column temperature on the retention of dipeptides on a B cyclodextrin column using a mobile phase of 10 Me0H/0.1 M ammonium acetate, pH 5.5...

See other pages where Cyclodextrin columns, 270 is mentioned: [Pg.66]    [Pg.218]    [Pg.229]    [Pg.159]    [Pg.212]    [Pg.328]    [Pg.333]    [Pg.335]    [Pg.337]    [Pg.338]    [Pg.155]    [Pg.271]    [Pg.435]    [Pg.512]    [Pg.525]    [Pg.1037]    [Pg.1038]    [Pg.66]    [Pg.218]    [Pg.229]    [Pg.358]    [Pg.265]    [Pg.268]   
See also in sourсe #XX -- [ Pg.325 , Pg.327 , Pg.328 , Pg.329 , Pg.330 , Pg.331 , Pg.332 , Pg.333 , Pg.334 , Pg.337 , Pg.338 ]




SEARCH



3-cyclodextrin chromatography column

Acids, cyclodextrin effect columns

Bases, cyclodextrin effect columns

Chiral cyclodextrin column

Cyclodextrin-silica columns, displacement

© 2024 chempedia.info