Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions, alkenes alkynes

The triphenyl derivative (91, R = R = R = Ph, R = H) is formed in a mechanistically interesting reaction between benzoyl formic acid anil (Ph-N=CPh-C02H), trifluoroacetic anhydride, and pyridine. Its 1,3-dipolar cycloaddition reactions with alkynes and alkenes have been reported. ... [Pg.22]

In recent years there has been a growing interest in the use of carbonyl ylides as 1,3-dipoles for total synthesis.127-130 Their dipolar cycloaddition to alkenic, alkynic and hetero multiple bonded dipolaro-philes has been well documented.6 Methods for the generation of carbonyl ylides include the thermal and photochemical opening of oxiranes,131 the thermal fragmentation of certain heterocyclic structures such as A3-l,3,4-oxadiazolines (141) or l,3-dioxolan-4-ones132-134 (142) and the reaction of carbenes or car-benoids with carbonyl derivatives.133-138 Formation of a carbonyl ylide by attack of a rhodium carbenoid... [Pg.1089]

The Pauson-Khand reaction is a well-known method for preparing cydopente-nones by the [2 + 2 + 1] cycloaddition reaction of alkyne, alkene and CO. While reactions using stoichiometric amounts of Co2(CO)g were initially examined, catalytic versions with cobalt, titanium, rhodium, iridium, and ruthenium complexes have recently been developed. Whilst the intramolecular version is rather easy, the inter-molecular version is a very difficult problem that has not yet been solved [76]. [Pg.287]

A study of the reactivity of the carbonyl-functional phospha-alkenes (305) has also been reported. The triphospha-Dewar-benzene (306) has been shown to undergo cycloaddition reactions with alkynes to form the triphosphabishomo-prismane system (307). Cycloaddition of t-butylphospha-ethyne to the phosphatriafulvene (308) results in the formation of a single isomer of the diphosphaisobenzene (309), having an allene system within the ring. This... [Pg.43]

The thermal elimination of SO3 from 1,3,2,4,5-dioxadithiazine 2,2,4,4-tetroxides (189) occurs very readily at 0°C, generating the iV-sulfonylamides (190). These then act as SNCO heterodienes in [4 -I- 2] cycloaddition reactions with alkynes <88ZORl978> and alkenes <85TL5689>, to give either the fully unsaturated oxathiazines (191) or the dihydro systems (192) (Scheme 22). Some of the products resulting from [2 -I- 2] cycloaddition (across the S=N bond) were observed in each case. [Pg.854]

Also, RCH=N+=NR SbCle reacts with acetylenes and olefins to give the [3+2] cycloadductsSimilar cycloaddition reactions with alkynes and alkenes are also observed with l-(chloroalkyl)-l-aza-2-azoniaallene salts to give 43 examples are shown in Table 2.4 2. [Pg.40]

Qiu G, Kuang Y, Wu J (2014) N-imide ylide-based reactions C-H functionalization, nucleophilic addition and cycloaddition. Adv Synth Catal 356(17) 3483-3504 Menon RS, Nair V (2014) 4.21 Intramolecular 1,3-dipolar cycloadditions of alkenes, alkynes, and allenes. Compr Org Synth 11 4 1281-1341... [Pg.214]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

Burger s criss-cross cycloaddition reaction of hexafluoracetone-azine (76S349) is also a synthetic method of the [CNN + CC] class. In turn, the azomethines thus produced, (625) and (626) (79LA133), can react with alkenes and alkynes to yield azapentalene derivatives (627) and (628), or isomerize to A -pyrazolines (629) which subsequently lose HCF3 to afford pyrazoles (630 Scheme 56) (82MI40401). [Pg.283]

The photochemical cycloadditions of alkenes and alkynes with aromatic compounds have received by far the most attention. Yields of [2+2] cydoadducts can be good, but reaction times are often long and secondary rearrangement products are common [139, 140, 141,142, 143,144, 145,146] (equations 63-65). The pioneering mechanistic and synthetic work on aromatic photocycloadditions has been reviewed [147],... [Pg.790]

Recently, Burger devised an improved method of carrying out mild, regiospecific cyclizations that involve an intermediate that acts as a synthon for a nitrile ylide of HCN [47 (equation 48). With this methodology, cycloadditions with activated alkenes, alkynes, and azo compounds were earned out [47] (equation 49). All such reported reactions were regiospecific and had the same orientational preference... [Pg.813]

Cycloaddition reactions also have important applications for acyclic chalcogen-nitrogen species. Extensive studies have been carried out on the cycloaddition chemistry of [NSa]" which, unlike [NOa]", undergoes quantitative, cycloaddition reactions with unsaturated molecules such as alkenes, alkynes and nitriles (Section 5.3.2). ° The frontier orbital interactions involved in the cycloaddition of [NSa]" and alkynes are illustrated in Fig. 4.13. The HOMO ( Tn) and LUMO ( r ) of the sulfur-nitrogen species are of the correct symmetry to interact with the LUMO (tt ) and HOMO (tt) of a typical alkyne, respectively. Although both... [Pg.70]

The reaction of an alkyne 1 and an alkene 2 in the presence of dicobaltoctacar-bonyl to yield a cyclopentenone 3 is referred to as the Pauson-Khand reaction Formally it is a [2 + 2 + 1 ]-cycloaddition reaction. The dicobaltoctacarbonyl acts as coordinating agent as well as a source of carbon monoxide. [Pg.223]

The regioselectivity observed in these reactions can be correlated with the resonance structure shown in Fig. 2. The reaction with electron-rich or electron-poor alkynes leads to intermediates which are the expected on the basis of polarity matching. In Fig. 2 is represented the reaction with an ynone leading to a metalacycle intermediate (formal [4C+2S] cycloadduct) which produces the final products after a reductive elimination and subsequent isomerisation. Also, these reactions can proceed under photochemical conditions. Thus, Campos, Rodriguez et al. reported the cycloaddition reactions of iminocarbene complexes and alkynes [57,58], alkenes [57] and heteroatom-containing double bonds to give 2Ff-pyrrole, 1-pyrroline and triazoline derivatives, respectively [59]. [Pg.74]

The 1,3-dipolar eyeloaddition, also known as the Huisgen cycloaddition, is a elassie reaetion in organic chemistry consisting in the reaetion of a dipolar-ophile with a 1,3-dipolar compound that allows the produetion of various five-membered heteroeyeles. This reaction represents one of the most productive fields of modern synthetic organic chemistry. Most dipolarophiles are alkenes, alkynes, and molecules possessing related heteroatom functional... [Pg.296]

Products from the Cycloaddition Reactions of (Me3Si) R2. Si=C(OSiMe3)R with Dienes, Alkenes, and Alkynes (% Yields)... [Pg.118]

Co-catalyzed transformations are concerned mainly with the [2+2+2] cycloadditions of three alkyne groups to give arenes. Another important reaction is the [2+2+1] cycloaddition of alkynes, alkenes and CO to give cyclopentenones, which is the well-known as Pauson-Khand reaction [272]. [Pg.458]

Dipolar cycloaddition reaction of azomethine ylides to alkynes or alkenes followed by oxidation is one of the standard methods for the preparation of pyrroles.54 Recently, this strategy has been used for the preparation of pyrroles with CF3 or Me3Si groups at the (3-positions.55 Addition of azomethine ylides to nitroalkenes followed by elimination of HN02 with base gives pyrroles in 96% yield (Eq. 10.48).56... [Pg.338]

The 3-oxo-2-pyrazolidinium ylides 315, easily available by reaction of the corresponding pyrazolidin-3-one with aromatic aldehydes, function as 1,3-dipoles in cycloaddition reactions with suitable alkenes and alkynes to provide the corresponding products. When unsymmetrical alkynes are used, mixtures of both possible products 316 and 317 are usually obtained (Equation 45). The regioselectivity of cycloadditions of the reaction with methyl propiolate is influenced by the substituents on the aryl residue using several 2,6-di- and 2,4,6-trisubstituted phenyl derivatives only compound 316 is formed <2001HCA146>. Analogous reactions of 3-thioxo-l,2-pyrazolidinium ylides have also been described <1994H(38)2171>. [Pg.413]

The metal-mediated and metal-catalyzed [6 + 2]- and [6 + 4]-cycloaddition reactions, pioneered by Pettit and co-workers105 106 and Kreiter and co-workers,107 respectively, involve the cycloaddition of metal-complexed cyclic trienes with 7r-systems such as alkenes, alkynes, and dienes. The [6 + 2]-reactions produce bicyclo[4.2.1]nonadiene derivatives and the [6 + 4]-reactions produce bicyclo[4.4.1]undecatrienes (Scheme 32). Trienes complexed to chromium, which can be prepared on large scale (40 g) as reported by Rigby and co-workers,108 react with 7r-systems upon thermolysis or irradiation.109-111 Chromium and iron-catalyzed [6 + 2]-reactions of cycloheptatrienes and disubstituted alkynes... [Pg.621]

Cyclobutanones (11, 560-561). Ketenimium salts are more reactive than ke-tenes in [2 + 2] cycloadditions with alkenes to prepare cyclobutanones. The salts are readily available by in situ reaction of tertiary amides with triflic anhydride and a base, generally 2,4,6-collidine. The cycloaddition proceeds satisfactorily with alkyl-substituted alkenes and alkynes, but not with enol ethers or enamines.1... [Pg.324]

Af-Acyliminium ions are known to serve as electron-deficient 4n components and undergo [4+2] cycloaddition with alkenes and alkynes.15 The reaction has been utilized as a useftil method for the construction of heterocycles and acyclic amino alcohols. The reaction can be explained in terms of an inverse electron demand Diels-Alder type process that involves an electron-deficient hetero-diene with an electron-rich dienophile. Af-Acyliminium ions generated by the cation pool method were also found to undergo [4+2] cycloaddition reaction to give adduct 7 as shown in Scheme 7.16 The reaction with an aliphatic olefin seems to proceed by a concerted mechanism, whereas the reaction with styrene derivatives seems to proceed by a stepwise mechanism. In the latter case, significant amounts of polymeric products were obtained as byproducts. The formation of polymeric byproducts can be suppressed by micromixing. [Pg.205]


See other pages where Cycloaddition reactions, alkenes alkynes is mentioned: [Pg.744]    [Pg.618]    [Pg.618]    [Pg.618]    [Pg.878]    [Pg.991]    [Pg.85]    [Pg.60]    [Pg.588]    [Pg.499]    [Pg.475]    [Pg.93]    [Pg.145]    [Pg.117]    [Pg.410]    [Pg.801]    [Pg.11]    [Pg.680]    [Pg.26]    [Pg.20]    [Pg.165]    [Pg.606]    [Pg.613]    [Pg.144]   
See also in sourсe #XX -- [ Pg.73 ]

See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Alkenes 2 + 3]-cycloaddition reactions

Alkenes 2+2]cycloaddition

Alkenes, cycloadditions

Alkynes 2+2]-cycloadditions

Alkynes cycloaddition

Alkynes cycloaddition reactions

Cycloadditions reactions with, alkenes alkynes

© 2024 chempedia.info