Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes, unsymmetrical

Electrophilic addition to terminal alkynes (unsymmetrical) is regioselective and follows Markovnikov s rule. Hydrogen halides can be added to alkynes just like alkenes, to form first the vinyl halide, and then the geminal alkyl dihalide. The addition of HX to an alkyne can be stopped after the first... [Pg.201]

There also exists an acidregioselective condensation of the aldol type, namely the Mannich reaction (B. Reichert, 1959 H. Hellmann, 1960 see also p. 291f.). The condensation of secondary amines with aldehydes yields Immonium salts, which react with ketones to give 3-amino ketones (=Mannich bases). Ketones with two enolizable CHj-groupings may form 1,5-diamino-3-pentanones, but monosubstitution products can always be obtained in high yield. Unsymmetrical ketones react preferentially at the most highly substituted carbon atom. Sterical hindrance can reverse this regioselectivity. Thermal elimination of amines leads to the a,)3-unsaturated ketone. Another efficient pathway to vinyl ketones starts with the addition of terminal alkynes to immonium salts. On mercury(ll) catalyzed hydration the product is converted to the Mannich base (H. Smith, 1964). [Pg.57]

Out first example is 2-hydroxy-2-methyl-3-octanone. 3-Octanone can be purchased, but it would be difficult to differentiate the two activated methylene groups in alkylation and oxidation reactions. Usual syntheses of acyloins are based upon addition of terminal alkynes to ketones (disconnection 1 see p. 52). For syntheses of unsymmetrical 1,2-difunctional compounds it is often advisable to look also for reactive starting materials, which do already contain the right substitution pattern. In the present case it turns out that 3-hydroxy-3-methyl-2-butanone is an inexpensive commercial product. This molecule dictates disconnection 3. Another practical synthesis starts with acetone cyanohydrin and pentylmagnesium bromide (disconnection 2). Many 1,2-difunctional compounds are accessible via oxidation of C—C multiple bonds. In this case the target molecule may be obtained by simple permanganate oxidation of 2-methyl-2-octene, which may be synthesized by Wittig reaction (disconnection 1). [Pg.201]

Both chlorines of 1,1-dichloroethylene (340) react stepwise with different terminal alkynes to form the unsymmetrical enediyne 341 [250]. The coupling of the dichloroimine 342 with tin acetylide followed by hydrolysis affords the dialkynyl ketone 343[2511. The phenylthioimidoyl chloride 344 undergoes stepwise reactions with two different tin acetylides to give the dialkynylimine 345[252],... [Pg.176]

The alkynyl iodide 359 undergoes cross-coupling with a terminal alkyne to give the 1,3-diyne 360[264]. No homocoupling product is formed. This reaction offers a good synthetic method for unsymmetrical 1,3-diynes. [Pg.178]

The regioselectivity of the reaction with unsymmetrical alkynes is poor. Mixtures of isomers are obtained with alkyl substituted acetylenes, if the alkyl groups do not differ much in size. A solution to this problem has been reported by Semmelhack et al. The reactants are connected by a -OCHaCHaO-tether, which can later be removed the coupling step thus becomes intramolecular ... [Pg.99]

The two reactions described above can be applied for the synthesis of symmetrical -acetylenes only. Unsymmetrical bis-acetylenes can be prepared by using the Cadiot-Chodkiew icz reaction For that method a terminal alkyne 1 is reacted with a bromoalkyne 8 in the presence of a copper catalyst, to yield an unsymmetrical coupling product 9 ... [Pg.137]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

A mixture of both possible ketones results when an unsymmetrically substituted internal alkyne (RC=CR ) is hydrated. The reaction is therefore most useful when applied to a terminal alkyne (RC=CH) because only a methyl ketone is formed. [Pg.266]

Due to the inherent unsymmetric arene substitution pattern the benzannulation reaction creates a plane of chirality in the resulting tricarbonyl chromium complex, and - under achiral conditions - produces a racemic mixture of arene Cr(CO)3 complexes. Since the resolution of planar chiral arene chromium complexes can be rather tedious, diastereoselective benzannulation approaches towards optically pure planar chiral products appear highly attractive. This strategy requires the incorporation of chiral information into the starting materials which may be based on one of three options a stereogenic element can be introduced in the alkyne side chain, in the carbene carbon side chain or - most general and most attractive - in the heteroatom carbene side chain (Scheme 20). [Pg.135]

The regiochemistry of Al-H addition to unsymmetrically substituted alkynes can be significantly altered by the presence of a catalyst. This was first shown by Eisch and Foxton in the nickel-catalyzed hydroalumination of several disubstituted acetylenes [26, 32]. For example, the product of the uncatalyzed reaction of 1-phenyl-propyne (75) with BujAlH was exclusively ds-[3-methylstyrene (76). Quenching the intermediate organoaluminum compounds with DjO revealed a regioselectivity of 82 18. In the nickel-catalyzed reaction, cis-P-methylstyrene was also the major product (66%), but it was accompanied by 22% of n-propylbenzene (78) and 6% of (E,E)-2,3-dimethyl-l,4-diphenyl-l,3-butadiene (77). The selectivity of Al-H addition was again studied by deuterolytic workup a ratio of 76a 76b = 56 44 was found in this case. Hydroalumination of other unsymmetrical alkynes also showed a decrease in the regioselectivity in the presence of a nickel catalyst (Scheme 2-22). [Pg.66]

The stoichiometric hydroamination of unsymmetrically disubstituted alkynes is highly regioselective, generating the azametaUacycle with the larger alkyne substituent a to the metal center [294, 295]. In others words, the enamine or imine formed results from an anti-Markovnikov addition. Unfortunately, this reaction could not be applied to less stericaUy hindered amines. [Pg.125]

For unsymmetrically disubstituted alkynes, the regioselectivity is 100% anti-Markovnikov, phenylpropyne being the most reactive alkyne (Eq. 4.78) [296]. [Pg.125]

As for alkenes, the rate of hydrozirconation of alkynes decreases with increasing substitution on the alkyne. An unsymmetrical diyne reacts with 1 preferentially at the less-substituted triple bond [85]. [Pg.265]

Recently, Marino et al. reported a Cadiot-Chodkiewicz cross-coupling reaction of bulky trialkylsilyl-protected alkynes with 1-bromoalkynes in aqueous amine to form a variety of unsymmetrical diynes in good yields (75 95%) (Eq. 4.23).44... [Pg.111]

Many silenes react cleanly in a [2 + 2] manner with carbon-carbon multiple bonds, and several examples of such behavior have been given above. Some additional examples are listed in Scheme 16, there now being too many examples known to allow a full listing. For the cases listed,33,65 185189 each of which involves a polarized carbon-carbon double bond, the products were isolated and well characterized and the main products were those of a [2 + 2] reaction. Wherever regioisomerism was possible, only a single regioisomer has been observed this includes cases in which unsymmetric alkynes were involved. [Pg.121]

One drawback to this alkyne annulation chemistry is that it requires either symmetrical alkynes or unsymmetrical alkynes in which the two substitutents on the internal alkyne are sterically quite different or else one obtains mixtures of regioisomers. One way to overcome this problem is to prepare the corresponding arylalkyne through catalytic Pd/Cu chemistry and then effect electrophilic cyclization using organic halides and a Pd catalyst (Scheme 8).9... [Pg.438]

The orientation of addition of an unsymmetrical adduct, HY or XY, to an unsymmetrically substituted alkene will be defined by the preferential formation of the more stabilised carbanion, as seen above (cf. preferential formation of the more stabilised carbocation in electrophilic addition, p. 184). There is little evidence available about stereoselectivity in such nucleophilic additions to acyclic alkenes. Nucleophilic addition also occurs with suitable alkynes, generally more readily than with the corresponding alkenes. [Pg.199]

The 3-oxo-2-pyrazolidinium ylides 315, easily available by reaction of the corresponding pyrazolidin-3-one with aromatic aldehydes, function as 1,3-dipoles in cycloaddition reactions with suitable alkenes and alkynes to provide the corresponding products. When unsymmetrical alkynes are used, mixtures of both possible products 316 and 317 are usually obtained (Equation 45). The regioselectivity of cycloadditions of the reaction with methyl propiolate is influenced by the substituents on the aryl residue using several 2,6-di- and 2,4,6-trisubstituted phenyl derivatives only compound 316 is formed <2001HCA146>. Analogous reactions of 3-thioxo-l,2-pyrazolidinium ylides have also been described <1994H(38)2171>. [Pg.413]


See other pages where Alkynes, unsymmetrical is mentioned: [Pg.372]    [Pg.313]    [Pg.372]    [Pg.313]    [Pg.40]    [Pg.486]    [Pg.87]    [Pg.30]    [Pg.156]    [Pg.616]    [Pg.131]    [Pg.927]    [Pg.206]    [Pg.141]    [Pg.47]    [Pg.68]    [Pg.201]    [Pg.265]    [Pg.546]    [Pg.122]    [Pg.124]    [Pg.686]    [Pg.440]    [Pg.441]    [Pg.91]    [Pg.98]    [Pg.412]    [Pg.296]    [Pg.131]    [Pg.67]    [Pg.91]    [Pg.97]    [Pg.199]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Unsymmetric

© 2024 chempedia.info