Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenation cyanohydrins

A vigorous evolution of hydrogen gas occurs during the addition of the acetone cyanohydrin. Hydrogen evolution virtually ceases after stirring at room temperature for 2 hr. [Pg.65]

Mandelic acid. This preparation is an example of the synthesis of an a-hydroxy acid by the cyanohydrin method. To avoid the use of the very volatile and extremely poisonous hquid hydrogen cyanide, the cyanohydrin (mandelonitrile) is prepared by treatment of the so um bisulphite addition compound of benzaldehj de (not isolated) with sodium cyanide ... [Pg.754]

The product of addition of hydrogen cyanide to an aldehyde or a ketone contains both a hydroxyl group and a cyano group bonded to the same carbon Compounds of this type are called cyanohydrins... [Pg.717]

The addition of hydrogen cyanide is catalyzed by cyanide ion but HCN is too weak an acid to provide enough C=N for the reaction to proceed at a reasonable rate Cyanohydrins are therefore normally prepared by adding an acid to a solution containing the carbonyl compound and sodium or potassium cyanide This procedure ensures that free cyanide ion is always present m amounts sufficient to increase the rate of the reaction... [Pg.718]

A few cyanohydrins and ethers of cyanohydrins occur naturally One species of millipede stores benzaldehyde cyanohydrin along with an enzyme that catalyzes its cleavage to benzaldehyde and hydrogen cyanide m separate compartments above its legs When attacked the insect ejects a mixture of the cyanohydrin and the enzyme repelling the invader by spraying it with hydrogen cyanide... [Pg.720]

The presence of an aldehyde function m their open chain forms makes aldoses reactive toward nucleophilic addition of hydrogen cyanide Addition yields a mixture of diastereo meric cyanohydrins... [Pg.1055]

The reaction is used for the chain extension of aldoses in the synthesis of new or unusual sugars In this case the starting material l arabinose is an abundant natural product and possesses the correct configurations at its three chirality centers for elaboration to the relatively rare l enantiomers of glucose and mannose After cyanohydrin formation the cyano groups are converted to aldehyde functions by hydrogenation m aqueous solution Under these conditions —C=N is reduced to —CH=NH and hydrolyzes rapidly to —CH=0 Use of a poisoned palladium on barium sulfate catalyst prevents further reduction to the alditols... [Pg.1056]

As a class of compounds, the two main toxicity concerns for nitriles are acute lethality and osteolathyrsm. A comprehensive review of the toxicity of nitriles, including detailed discussion of biochemical mechanisms of toxicity and stmcture-activity relationships, is available (12). Nitriles vary broadly in their abiUty to cause acute lethaUty and subde differences in stmcture can greatly affect toxic potency. The biochemical basis of their acute toxicity is related to their metaboHsm in the body. Following exposure and absorption, nitriles are metabolized by cytochrome p450 enzymes in the Hver. The metaboHsm involves initial hydrogen abstraction resulting in the formation of a carbon radical, followed by hydroxylation of the carbon radical. MetaboHsm at the carbon atom adjacent (alpha) to the cyano group would yield a cyanohydrin metaboHte, which decomposes readily in the body to produce cyanide. Hydroxylation at other carbon positions in the nitrile does not result in cyanide release. [Pg.218]

Miscellaneous Reactions. Sodium bisulfite adds to acetaldehyde to form a white crystalline addition compound, insoluble in ethyl alcohol and ether. This bisulfite addition compound is frequendy used to isolate and purify acetaldehyde, which may be regenerated with dilute acid. Hydrocyanic acid adds to acetaldehyde in the presence of an alkaU catalyst to form cyanohydrin the cyanohydrin may also be prepared from sodium cyanide and the bisulfite addition compound. Acrylonittile [107-13-1] (qv) can be made from acetaldehyde and hydrocyanic acid by heating the cyanohydrin that is formed to 600—700°C (77). Alanine [302-72-7] can be prepared by the reaction of an ammonium salt and an alkaU metal cyanide with acetaldehyde this is a general method for the preparation of a-amino acids called the Strecker amino acids synthesis. Grignard reagents add readily to acetaldehyde, the final product being a secondary alcohol. Thioacetaldehyde [2765-04-0] is formed by reaction of acetaldehyde with hydrogen sulfide thioacetaldehyde polymerizes readily to the trimer. [Pg.51]

Compounds with active hydrogen add to the carbonyl group of acetone, often followed by the condensation of another molecule of the addend or loss of water. Hydrogen sulfide forms hexamethyl-l,3,5-trithiane probably through the transitory intermediate thioacetone which readily trimerizes. Hydrogen cyanide forms acetone cyanohydrin [75-86-5] (CH2)2C(OH)CN, which is further processed to methacrylates. Ammonia and hydrogen cyanide give (CH2)2C(NH2)CN [19355-69-2] ix.orn. 6<55i the widely used polymerization initiator, azobisisobutyronitrile [78-67-1] is made (4). [Pg.93]

In the early versions, ethylene cyanohydrin was obtained from ethylene chlorohydrin and sodium cyanide. In later versions, ethylene oxide (from the dkect catalytic oxidation of ethylene) reacted with hydrogen cyanide in the presence of a base catalyst to give ethylene cyanohydrin. This was hydrolyzed and converted to acryhc acid and by-product ammonium acid sulfate by treatment with about 85% sulfuric acid. [Pg.155]

Enantioselective addition of hydrogen cyanide to hydroxypivaldehyde (25), catalyzed by (lf)-oxynittilase, afforded (R)-cyanohydrin (26) in good optical yield. Acid-catalyzed hydrolysis followed by cyclization resulted in (R)-pantolactone in 98% ee and 95% yield after one recrystallization (56). [Pg.60]

Cyanohydrins (qv) are formed by the reaction of glucose and similar compounds with hydrogen cyanide. The corresponding aminonitrile from methyl isobutyl ketone can be formed with ammonia and hydrogen cyanide. [Pg.376]

Estimates of various uses for hydrogen cyanide in the United States ate adiponitrile for nylon, 41% acetone cyanohydrin for acryhc plastics, 28% sodium... [Pg.380]

A cyanohydrin is an organic compound that contains both a cyanide and a hydroxy group on an aUphatic section of the molecule. Cyanohydrias are usually a-hydroxy nitriles which are the products of base-cataly2ed addition of hydrogen cyanide to the carbonyl group of aldehydes and ketones. The lUPAC name for cyanohydrias is based on the a-hydroxy nitrile name. Common names of cyanohydrias are derived from the aldehyde or ketoae from which they are formed (Table 1). [Pg.410]

Cyanohydrins are usually colorless to straw yellow Hquids with an objectionable odor akin to that of hydrogen cyanide. The lower molecular-weight cyanohydrins can be distilled under reduced pressure provided the cyanohydrin is kept at a slightly acidic pH. Table 2 Hsts physical properties of some common cyanohydrins. [Pg.410]

Catalytic hydrogenation of the nitrile function of cyanohydrins can give amines. As in the case of ordinary nitriles, catalytic reduction of cyanohydrins can yield a mixture of primary, secondary, and tertiary amines. Addition of acid or acetic anhydride to the reaction medium minimizes formation of secondary or tertiary amines through formation of the amine salt or acetamide derivative of the primary amine. [Pg.411]

High yields of optically active cyanohydrins have been prepared from hydrogen cyanide and carbonyl compounds using an enzyme as catalyst. Reduction of these optically active cyanohydrins with lithium aluminum hydride in ether affords the corresponding substituted, optically active ethanolamine (5) (see Alkanolamines). [Pg.411]

Addition of hydrogen cyanide to an aldose to form a cyanohydrin is the first step in the Kiliani-Fischer method for increasing the carbon chain of aldoses by one unit. Cyanohydrins react with Grignard reagents (see Grignard reaction) to give a-hydroxy ketones. [Pg.411]

Cyanohydrins react with hydrogen haUdes or PCl to give a-halo nitriles which can be further hydrolyzed to the a-halo carboxyUc acids. The a-hydroxy group of cyanohydrins can be esterified with an acid or acid chloride. Dehydration of cyanohydrins with phosphoms pentoxide gives >80% yields of alkylacrylonitriles (8). [Pg.411]

Cyanohydrins can be formed by (/) the acid- or base-cataly2ed reaction of hydrogen cyanide with an aldehyde or ketone ... [Pg.412]

Direct combination of hydrogen cyanide and a carbonyl compound is the commercial and most common route to cyanohydrins. [Pg.412]

AH ahphatic aldehydes and most ketones react to form cyanohydrins. The lower reactivity of ketones, relative to aldehydes, is attributed to a combination of electron-donating effects and increased steric hindrance of the second alkyl group in the ketones. The magnitude of the equiUbrium constants for the addition of hydrogen cyanide to a carbonyl group is a measure of the stabiUty of the cyanohydrin relative to the carbonyl compound plus hydrogen cyanide ... [Pg.412]

Table 3. Equilibrium Constants for Formation of Cyanohydrins from Hydrogen Cyanide Plus Carbonyl Compounds ... Table 3. Equilibrium Constants for Formation of Cyanohydrins from Hydrogen Cyanide Plus Carbonyl Compounds ...
Production of cyanohydrins is accompHshed through the base-cataly2ed combination of hydrogen cyanide and the carbonyl compound in a solvent, usually the cyanohydrin itself (17). The reaction is carried out at high dilution of the feeds, at 10—15°C, and pH 6.5—7.5. The product is continuously removed from the reaction 2one, cooled to push the equilibrium toward cyanohydrin formation, and then stabili2ed with mineral acid. Purification is usually effected by distillation. [Pg.413]

Cyanohydrins are highly toxic by inhalation or ingestion, and moderately toxic through skin absorption (21). AH a-hydroxy nitriles are potential sources of hydrogen cyanide or cyanides and must be handled with considerable caution. Contact with the skin and inhalation should be rigorously avoided. Special protective clothing should be worn and any exposure should be avoided (18,20). The area should be adequately ventilated. Immediate medical attention is essential in case of cyanohydrin poisoning. [Pg.413]

Formaldehyde Cyanohydrin. This cyanohydrin, also known as glycolonitrile [107-16-4], is a colorless Hquid with a cyanide odor. It is soluble in water, alcohol, and diethyl ether. Equimolar amounts of 37% formaldehyde and aqueous hydrogen cyanide mixed with a sodium hydroxide catalyst at 2°C for one hour give formaldehyde cyanohydrin in 79.5% yield (22). [Pg.413]

Acetaldehyde Cyanohydrin. This cyanohydrin, commonly known as lactonitnle, is soluble in water and alcohol, but insoluble in diethyl ether and carbon disulfide. Lactonitnle is used chiefly to manufacture lactic acid and its derivatives, primarily ethyl lactate. Lactonitnle [78-97-7] is manufactured from equimolar amounts of acetaldehyde and hydrogen cyanide containing 1.5% of 20% NaOH at —10 20 ° C. The product is stabili2ed with sulfuric acid (28). Sulfuric acid hydroly2es the nitrile to give a mixture of lactic acid [598-82-3] and ammonium bisulfate. [Pg.413]

Single-pass conversions of acetone cyanohydrin are 90—95% depending on the residence times and temperatures in the generator and hold tank. Overall yields of product from acetone and hydrogen cyanide can be >97%. There are no significant by-products of the reaction other than the sodium salts produced by neutralization of the catalyst. [Pg.414]

Ethylene Cyanohydrin. This cyanohydrin, also known as hydracrylonitnle or glycocyanohydrin [109-78-4] is a straw-colored Hquid miscible with water, acetone, methyl ethyl ketone, and ethanol, and is insoluble in benzene, carbon disulfide, and carbon tetrachloride. Ethylene cyanohydrin differs from the other cyanohydrins discussed here in that it is a P-cyanohydrin. It is formed by the reaction of ethylene oxide with hydrogen cyanide. [Pg.415]

Cyanohydrin Synthesis. Another synthetically useful enzyme that catalyzes carbon—carbon bond formation is oxynitnlase (EC 4.1.2.10). This enzyme catalyzes the addition of cyanides to various aldehydes that may come either in the form of hydrogen cyanide or acetone cyanohydrin (152—158) (Fig. 7). The reaction constitutes a convenient route for the preparation of a-hydroxy acids and P-amino alcohols. Acetone cyanohydrin [75-86-5] can also be used as the cyanide carrier, and is considered to be superior since it does not involve hazardous gaseous HCN and also virtually eliminates the spontaneous nonenzymatic reaction. (R)-oxynitrilase accepts aromatic (97a,b), straight- (97c,e), and branched-chain aUphatic aldehydes, converting them to (R)-cyanohydrins in very good yields and high enantiomeric purity (Table 10). [Pg.347]


See other pages where Hydrogenation cyanohydrins is mentioned: [Pg.595]    [Pg.595]    [Pg.595]    [Pg.595]    [Pg.595]    [Pg.595]    [Pg.121]    [Pg.341]    [Pg.717]    [Pg.743]    [Pg.747]    [Pg.867]    [Pg.217]    [Pg.251]    [Pg.242]    [Pg.376]    [Pg.412]    [Pg.412]    [Pg.413]    [Pg.414]    [Pg.414]   
See also in sourсe #XX -- [ Pg.493 ]




SEARCH



Cyanohydrine

Cyanohydrins

© 2024 chempedia.info