Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal surface reactions

The first example was the calculation of the rate of ammonia formation under industrial conditions [130, 131], based on well studied single-crystal surface reactions [1, 135, 136]. [Pg.31]

As on previous occasions, the reader is reminded that no very extensive coverage of the literature is possible in a textbook such as this one and that the emphasis is primarily on principles and their illustration. Several monographs are available for more detailed information (see General References). Useful reviews are on future directions and anunonia synthesis [2], surface analysis [3], surface mechanisms [4], dynamics of surface reactions [5], single-crystal versus actual catalysts [6], oscillatory kinetics [7], fractals [8], surface electrochemistry [9], particle size effects [10], and supported metals [11, 12]. [Pg.686]

One of the main uses of these wet cells is to investigate surface electrochemistry [94, 95]. In these experiments, a single-crystal surface is prepared by UFIV teclmiqiies and then transferred into an electrochemical cell. An electrochemical reaction is then run and characterized using cyclic voltaimnetry, with the sample itself being one of the electrodes. In order to be sure that the electrochemical measurements all involved the same crystal face, for some experiments a single-crystal cube was actually oriented and polished on all six sides Following surface modification by electrochemistry, the sample is returned to UFIV for... [Pg.314]

How are fiindamental aspects of surface reactions studied The surface science approach uses a simplified system to model the more complicated real-world systems. At the heart of this simplified system is the use of well defined surfaces, typically in the fonn of oriented single crystals. A thorough description of these surfaces should include composition, electronic structure and geometric structure measurements, as well as an evaluation of reactivity towards different adsorbates. Furthemiore, the system should be constructed such that it can be made increasingly more complex to more closely mimic macroscopic systems. However, relating surface science results to the corresponding real-world problems often proves to be a stumbling block because of the sheer complexity of these real-world systems. [Pg.921]

Sofid sodium permanganate monohydrate has been shown to be a selective synthetic reagent (156). It is typically used in hexane for the heterogeneous oxidation of aldehydes, alcohols, and sulfides. Synthetic methodology based on crystal surfaces exhibited greater selectivity, higher yield, and easier work-up as compared to aqueous permanganate reactions. [Pg.522]

Fig. 4. Schematic of a multisequence biosensor in which the target glucose is first converted to glucose-6-phosphate, G6P, in the test solution by hexokinase. G6P then reacts selectively with glucose-6-phosphate dehydrogenase immobilized on the quartz crystal surface. Electrons released in the reaction then chemically reduce the Pmssian blue film (see Fig. 3), forcing an uptake of potassium ions. The resulting mass increase is manifested as a... Fig. 4. Schematic of a multisequence biosensor in which the target glucose is first converted to glucose-6-phosphate, G6P, in the test solution by hexokinase. G6P then reacts selectively with glucose-6-phosphate dehydrogenase immobilized on the quartz crystal surface. Electrons released in the reaction then chemically reduce the Pmssian blue film (see Fig. 3), forcing an uptake of potassium ions. The resulting mass increase is manifested as a...
A number of theories have been put forth to explain the mechanism of polytype formation (30—36), such as the generation of steps by screw dislocations on single-crystal surfaces that could account for the large number of polytypes formed (30,35,36). The growth of crystals via the vapor phase is beheved to occur by surface nucleation and ledge movement by face specific reactions (37). The soHd-state transformation from one polytype to another is beheved to occur by a layer-displacement mechanism (38) caused by nucleation and expansion of stacking faults in close-packed double layers of Si and C. [Pg.464]

Of these, the most extensive use is to identify adsorbed molecules and molecular intermediates on metal single-crystal surfaces. On these well-defined surfaces, a wealth of information can be gained about adlayers, including the nature of the surface chemical bond, molecular structural determination and geometrical orientation, evidence for surface-site specificity, and lateral (adsorbate-adsorbate) interactions. Adsorption and reaction processes in model studies relevant to heterogeneous catalysis, materials science, electrochemistry, and microelectronics device failure and fabrication have been studied by this technique. [Pg.443]

R. Imbhil. Oscillatory reactions on single crystal surfaces. Prog Surf Sci 44 185-343, 1993. [Pg.432]

The Clean Single-Crystal-Surface Approach to Surface Reactions N. E. Farnsworth... [Pg.425]

Dehydration reactions are typically both endothermic and reversible. Reported kinetic characteristics for water release show various a—time relationships and rate control has been ascribed to either interface reactions or to diffusion processes. Where water elimination occurs at an interface, this may be characterized by (i) rapid, and perhaps complete, initial nucleation on some or all surfaces [212,213], followed by advance of the coherent interface thus generated, (ii) nucleation at specific surface sites [208], perhaps maintained during reaction [426], followed by growth or (iii) (exceptionally) water elimination at existing crystal surfaces without growth [62]. [Pg.117]

Basu and Searcy [736] have applied the torsion—effusion and torsion— Langmuir techniques, referred to above for calcite decomposition [121], to the comparable reaction of BaC03, which had not been studied previously. The reaction rate at the (001) faces of single crystals was constant up to a product layer thickness of 1 mm. The magnitude of E (225.9 kJ mole-1) was appreciably less than the enthalpy of the reaction (252.1 kJ mole-1). This observation, unique for carbonates, led to the conclusion that the slowest step in BaC03 vacuum decomposition at 1160—1210 K is diffusion of one of the reaction components in a condensed phase or a surface reaction of C02 prior to desorption. [Pg.171]

The solid product, BaO, was apparently amorphous and porous. Decomposition rate measurements were made between the phase transformation at 1422 K and 1550 K (the salt melts at 1620 K). The enthalpy and entropy of activation at 1500 K (575 13 kJ mole-1 and 200 8 J K"1 mole-1) are very similar to the standard enthalpy and entropy of decomposition at the same temperature (588 7 kJ and 257 5 J K-1, respectively, referred to 1 mole of BaS04). The simplest mechanistic explanation of the observations is that all steps in the reaction are in equilibrium except for desorption of the gaseous products, S02 and 02. Desorption occurs over an area equivalent to about 1.4% of the total exposed crystal surface. Other possible models are discussed. [Pg.175]

The effect of alkali presence on the adsorption of oxygen on metal surfaces has been extensively studied in the literature, as alkali promoters are used in catalytic reactions of technological interest where oxygen participates either directly as a reactant (e.g. ethylene epoxidation on silver) or as an intermediate (e.g. NO+CO reaction in automotive exhaust catalytic converters). A large number of model studies has addressed the oxygen interaction with alkali modified single crystal surfaces of Ag, Cu, Pt, Pd, Ni, Ru, Fe, Mo, W and Au.6... [Pg.46]

D.G. Kelly, M. Salmeron, and G.A. Somorjai, The adsorption and reactions of hydrocarbons on molybdenum single crystal surfaces when clean and in presence of coadsorbed sulfur or carbon, Surf. Sci. 175,465 (1986). [Pg.88]

When solid particles are subject to noncatalytic reactions, the effects of the reaction on individual particles are derived and then the results are averaged to determine overall properties. The general techniques for this averaging are called population balance methods. They are important in mass transfer operations such as crystallization, drop coagulation, and drop breakup. Chapter 15 uses these methods to analyze the distribution of residence times in flow systems. The following example shows how the methods can be applied to a collection of solid particles undergoing a consumptive surface reaction. [Pg.422]

In this figure, the activation energies of N2 dissociation are compared for the different reaction centers the (111) surface structure ofan fee crystal and a stepped surface. Activation energies with respect to the energy of the gas-phase molecule are related to the adsorption energies of the N atoms. As often found for bond activating surface reactions, a value of a close to 1 is obtained. It implies that the electronic interactions between the surface and the reactant in the transition state and product state are similar. The bond strength of the chemical bond... [Pg.6]

It is important to realize that the assumption of a rate-determining step limits the scope of our description. As with the steady state approximation, it is not possible to describe transients in the quasi-equilibrium model. In addition, the rate-determining step in the mechanism might shift to a different step if the reaction conditions change, e.g. if the partial pressure of a gas changes markedly. For a surface science study of the reaction A -i- B in an ultrahigh vacuum chamber with a single crystal as the catalyst, the partial pressures of A and B may be so small that the rates of adsorption become smaller than the rate of the surface reaction. [Pg.61]

CO oxidation and the reaction between CO -t NO have been extensively studied. Much less is known about hydrocarbon oxidation, and the role of hydrocarbons in reducing NO is only beginning to be explored. Surface science studies with reactions on well-defined single-crystal surfaces have contributed significantly to our understanding, for an overview see B.E. Nieuwenhuys, Adv. Catal. 44 (1999) 259. [Pg.385]


See other pages where Crystal surface reactions is mentioned: [Pg.199]    [Pg.139]    [Pg.289]    [Pg.38]    [Pg.97]    [Pg.199]    [Pg.139]    [Pg.289]    [Pg.38]    [Pg.97]    [Pg.301]    [Pg.953]    [Pg.2222]    [Pg.2709]    [Pg.2748]    [Pg.230]    [Pg.514]    [Pg.429]    [Pg.344]    [Pg.196]    [Pg.441]    [Pg.495]    [Pg.85]    [Pg.121]    [Pg.133]    [Pg.139]    [Pg.160]    [Pg.267]    [Pg.285]    [Pg.53]    [Pg.75]    [Pg.78]    [Pg.172]    [Pg.374]    [Pg.273]   
See also in sourсe #XX -- [ Pg.790 , Pg.792 ]




SEARCH



Crystal reaction

Hydrogen evolution reaction single-crystal surfaces

Hydrogen oxidation reaction single-crystal surfaces

Metal single crystal surfaces, reactions

Reactions on Single Crystal Surfaces

Single-crystal surfaces catalytic reactions

Surface reactions clean single-crystal approach

The Single-Crystal Method of Studying Surface Reactions

© 2024 chempedia.info