Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-linking influence

The thermal stability of all membranes was determined via thermogravimetry under a 65-70 % O2 atmosphere with a heating rate of 20 K/min [54]. Firstly, it was investigated whether the type of cross-linking influences the thermal stability of the membranes. Therefore, in Fig. 4.13, the TGA traces of the membranes 1925C (covalently cross-linked), 1927A (ionically cross-linked), and 1943 (covalent-ionically cross-linked) are presented together with B2. [Pg.76]

Paschalis, E.P. et al. (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone, 49, 1232-1241. [Pg.167]

Hydrogen bonding stabilizes some protein molecules in helical forms, and disulfide cross-links stabilize some protein molecules in globular forms. We shall consider helical structures in Sec. 1.11 and shall learn more about ellipsoidal globular proteins in the chapters concerned with the solution properties of polymers, especially Chap. 9. Both secondary and tertiary levels of structure are also influenced by the distribution of polar and nonpolar amino acid molecules relative to the aqueous environment of the protein molecules. Nonpolar amino acids are designated in Table 1.3. [Pg.19]

Other constituents may be added to assist in the formation of uniform beads or to influence the use properties of the polymers through plasticization or cross-linking. These include lubricants, such as lauryl or cetyl alcohol and stearic acid, and cross-linking monomers such as di- or trivinylbenzene, diaHyl esters of dibasic acids, and glycol dimethacrylates. [Pg.170]

The temperature of esterification has a significant influence on isomerization rate, which does not proceed above 50% at reaction temperatures below 150°C. In resins produced rapidly by using propylene oxide and mixed phthaUc and maleic anhydrides at 150°C, the polyester polymers, which can be formed almost exclusively in the maleate conformation, show low cross-linking reaction rates with styrene. [Pg.315]

The cross-linking reaction mechanism is also influenced by the presence of other monomers. Methyl methacrylate is often used to improve the uv resistance of styrene-based resins. However, the disparate reaction rates of styrene and methacrylate monomer with the fumarate unsaturation not only preclude the use of more than 8% of the methacrylate monomer due to the significant slowing of the cross-linking reaction but also result in undercured products. [Pg.318]

The action of redox metal promoters with MEKP appears to be highly specific. Cobalt salts appear to be a unique component of commercial redox systems, although vanadium appears to provide similar activity with MEKP. Cobalt activity can be supplemented by potassium and 2inc naphthenates in systems requiring low cured resin color lithium and lead naphthenates also act in a similar role. Quaternary ammonium salts (14) and tertiary amines accelerate the reaction rate of redox catalyst systems. The tertiary amines form beneficial complexes with the cobalt promoters, faciUtating the transition to the lower oxidation state. Copper naphthenate exerts a unique influence over cure rate in redox systems and is used widely to delay cure and reduce exotherm development during the cross-linking reaction. [Pg.319]

Performance Characteristics Polyester resins undergo a rapid transformation from a viscous Hquid to a soHd plastic state that comprises a three-dimensional cross-linked polymer stmcture. The level of polyester polymer unsaturation determines essential performance characteristics (Table 7), although polymer components can influence subtle features that affect thermal, electrical, and mechanical performance as defined by ASTM procedures. [Pg.320]

For all three diallyl phthalate isomers, gelation occurs at nearly the same conversion DAP prepolymer contains fewer reactive allyl groups than the other isomeric prepolymers (36). More double bonds are lost by cyclisation in DAP polymerisation, but this does not affect gelation. The heat-distortion temperature of cross-linked DAP polymer is influenced by the initiator chosen and its concentration (37). Heat resistance is increased by electron beam irradiation. [Pg.84]

There are three generally recognized classifications for sulfur vulcanization conventional, efficient (EV) cures, and semiefficient (semi-EV) cures. These differ primarily ki the type of sulfur cross-links that form, which ki turn significantly influences the vulcanizate properties (Eig. 8) (21). The term efficient refers to the number of sulfur atoms per cross-link an efficiency factor (E) has been proposed (20). [Pg.238]

The modulus of elasticity can also influence the adhesion lifetime. Some sealants may harden with age as a result of plasticizer loss or continued cross-linking. As a sealant hardens, the modulus increases and more stress is placed on the substrate—sealant adhesive bond. If modulus forces become too high, the bond may faH adhesively or the substrate may faH cohesively, such as in concrete or asphalt. In either case the result is a faHed joint that wHl leak. [Pg.309]

The compositions of the conversion baths are proprietary and vary greatly. They may contain either hexavalent or trivalent chromium (179,180), but baths containing both Cr(III) and Cr(VI) are rare. The mechanism of film formation for hexavalent baths has been studied (181,182), and it appears that the strength of the acid and its identity, as well as time and temperature, influences the film s thickness and its final properties, eg, color. The newly prepared film is a very soft, easily damaged gel, but when allowed to age, the film slowly hardens, assumes a hydrophobic character and becomes resistant to abrasion. The film s stmcture can be described as a cross-linked Cr(III) polymer, that uses anion species to link chromium centers. These anions may be hydroxide, chromate, fluoride, and/or others, depending on the composition of the bath (183). [Pg.143]

Fig 23 8 The influence of cross-linking on a contour of the modulus diagram for polyisoprene. [Pg.247]

Figure 11.15. Typical chemical groupings in a sulphur-vulcanised natural rubber network, (a) Monosulphide cross-link (b) disulphide cross-link (c) polysulphide cross-link (j = 3-6) (d) parallel vicinal cross-link (n = 1-6) attached to adjacent main-chain atoms and which have the same influence as a single cross-link (e) cross-links attached to common or adjacent carbon atom (f) intra-chain cyclic monosulphide (g) intra-chain cyclic disulphide (h) pendent sulphide group terminated by moiety X derived from accelerator (i) conjugated diene (j) conjugated triene (k) extra-network material (1) carbon-carbon cross-links (probably absent)... Figure 11.15. Typical chemical groupings in a sulphur-vulcanised natural rubber network, (a) Monosulphide cross-link (b) disulphide cross-link (c) polysulphide cross-link (j = 3-6) (d) parallel vicinal cross-link (n = 1-6) attached to adjacent main-chain atoms and which have the same influence as a single cross-link (e) cross-links attached to common or adjacent carbon atom (f) intra-chain cyclic monosulphide (g) intra-chain cyclic disulphide (h) pendent sulphide group terminated by moiety X derived from accelerator (i) conjugated diene (j) conjugated triene (k) extra-network material (1) carbon-carbon cross-links (probably absent)...
The use of stabilisers (antioxidants) may, however, have adverse effects in that they inhibit cross-linking of the rubber. The influence of phenolic antioxidants on polystyrene-SBR alloys blended in an internal mixer at 180°C has been studied. It was found that alloys containing 1% of certain phenolic antioxidants were gel-deficient in the rubber phase.The gel-deficient blends were blotchy in appearance, and had lower flow rates compared with the normal materials, and mouldings were somewhat brittle. Substantial improvements in the impact properties were achieved when the antioxidant was added later in the mixing cycle after the rubber had reached a moderate degree of cross-linking. [Pg.439]

The cross-linking of the resin is, of course, not carried out until it is in situ in the finished product. This will take place by heating the resin at elevated temperatures with a catalyst, several of which are described in the literature, e.g. triethanolamine and metal octoates. The selection of the type and amount of resin has a critical Influence on the rate of cure and on the properties of the finished resin. [Pg.828]

The influence of the gel content in polyisoprene-tackifier blends on creep resistance and peel behaviour have been recently studied [62]. The gel content was achieved by cross-linking the adhesives with electron beam irradiation. The molecular weight of the soluble fraction in the blend was always dominated by that of the initial elastomer. Creep resistance was achieved either through molecular weight increases or gel content increases. However, the peel strength is strongly... [Pg.648]


See other pages where Cross-linking influence is mentioned: [Pg.1874]    [Pg.85]    [Pg.685]    [Pg.697]    [Pg.243]    [Pg.399]    [Pg.1874]    [Pg.85]    [Pg.685]    [Pg.697]    [Pg.243]    [Pg.399]    [Pg.130]    [Pg.268]    [Pg.153]    [Pg.354]    [Pg.360]    [Pg.419]    [Pg.419]    [Pg.421]    [Pg.432]    [Pg.38]    [Pg.508]    [Pg.521]    [Pg.527]    [Pg.341]    [Pg.343]    [Pg.24]    [Pg.502]    [Pg.24]    [Pg.63]    [Pg.251]    [Pg.288]    [Pg.141]    [Pg.649]    [Pg.1113]    [Pg.199]    [Pg.732]    [Pg.120]   


SEARCH



© 2024 chempedia.info