Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Critical micelle concentration structure

One of the most important characteristics of the emulsifier is its CMC, which is defined as the critical concentration value below which no micelle formation occurs. The critical micelle concentration of an emulsifier is determined by the structure and the number of hydrophilic and hydrophobic groups included in the emulsifier molecule. The hydrophile-lipophile balance (HLB) number is a good criterion for the selection of proper emulsifier. The HLB scale was developed by W. C. Griffin [46,47]. Based on his approach, the HLB number of an emulsifier can be calculated by dividing... [Pg.196]

Surfactants have a unique long-chain molecular structure composed of a hydrophilic head and hydrophobic tail. Based on the nature of the hydrophilic part surfactants are generally categorized as anionic, non-ionic, cationic, and zwitter-ionic. They all have a natural tendency to adsorb at surfaces and interfaces when added in low concentration in water. Surfactant absorption/desorption at the vapor-liquid interface alters the surface tension, which decreases continually with increasing concentrations until the critical micelle concentration (CMC), at which micelles (colloid-sized clusters or aggregates of monomers) start to form is reached (Manglik et al. 2001 Hetsroni et al. 2003c). [Pg.65]

The interaction of such compounds with the bilayer can result in alteration in vesicle properties such as permeability and stability of the bilayer structure. Amphiphatic compounds such as detergents (e.g., Triton and lysophosphoiipids) can intercalate in the bilayer below their critical micelle concentration (CMC) (Kitagawa et al.,... [Pg.272]

Micelles the mostly spherical nanoscale aggregates formed by amphiphilic compounds above their critical micelle concentration in aqueous solution have a narrow size distribution and are dynamic, because there is a fast exchange of amphiphiles in solution and those incorporated in micelles. However, micelles are defined as self-assembled structures, since the structure is in thermodynamical equilibrium. [Pg.188]

Aqueous micellar solutions, i.e. solutions containing a surfactant at a concentration above its critical micelle concentration, have been studied extensively during the last decade, in part from curiosity, and because of the possibility of providing unique chromatographic selectivity compared to conventional RPC [345-349]. Above the critical micelle concentration individual surfactant molecules self-aggregate to form structures known as micelles which are microscopically... [Pg.209]

When the variation of any colligative property of a surfactant in aqueous solution is examined, two types of behavior are apparent. At low concentrations, properties approximate those to be expected from ideal behavior. However, at a concentration value that is characteristic for a given surfactant system (critical micelle concentration, CMC), an abrupt deviation from such behavior is observed. At concentrations above the CMC, molecular aggregates called micelles are formed. By increasing the concentration of the surfactant, depending on the chemical and physical nature of the molecule, structural changes to a more... [Pg.256]

Molecules that possess both hydrophilic and hydrophobic structures may associate in aqueous media to form dynamic aggregates, commonly known as micelles. The properties of micellar structures have been discussed in great detail [66-69], but thejr main pharmaceutical application lies in their ability to provide enhanced solubility to compounds lacking sufficient aqueous solubility [70], The ability of a micelle to solubilize compounds of limited aqueous solubility can be understood from consideration of the schematic drawing of Fig. 10a. Above the critical micelle concentration, these molecules orient themselves with the polar ends in interfacing with the aqueous solution and the nonpolar ends at the interior. A hydrophobic core is formed at the interior of the micelle, and hydrophobic solute molecules enter and occupy this region. [Pg.348]

While much is now known about the function, structure, and mechanism of PLCj,-, there remain numerous unanswered questions. For example, it is well documented that PLCSc preferentially hydrolyzes micellular substrates and monomeric substrates with longer acyl side chains. However, the basis for the discontinuity in the rate of hydrolysis that is observed at the critical micelle concentration of the substrate is unknown as is the reason for the increase in the Km for soluble substrates as the length of the acyl side chains decrease. What is... [Pg.163]

A wide structural variation is possible within each class of molecules because both the length of the hydrophobic portion and the nature of the hydrophilic head group, as well as its position along the backbone, may be varied. The properties of the aggregates formed from these surfactants and the conditions under which they are formed depends on all these parameters. As the concentration of the surfactant in an aqueous solution is increased, many of the chemical and physical properties of the solution change rather abruptly (but continuously) over a concentration range known as the critical micelle concentration (CMC). [Pg.160]

Performance Indices Quality Factors Optimum E1LB Critical micelle concentration (CMC) Soil solubilization capacity Krafft point (ionic surfactants only) Cloud point (nonionic surfactants only) Viscosity Calcium binding capacity Surface tension reduction at CMC Dissolution time Material and/or structural attributes... [Pg.242]

Numerous books and reviews have been published on this subject (e.g. Fendler and Fendler, 1975 Mittal, 1977). Therefore, the structural characteristics of micelles will be presented only to the extent that is necessary for the subsequent discussions. These surfactants form micelles at concentrations above the cmc (critical micelle concentration). Such micelles have average radii of 12-30 A and contain 20-100 surfactant molecules. The hydrophobic part of the aggregate forms the core of the micelle while the polar head groups are located at the micellar surface. Micelles at concentrations close to their cmc are assumed to possess spherical and ellipsoidal structures (Tanford, 1973, 1978). A schematic representation of a spherical ionic micelle is shown in Fig. 1. [Pg.437]

Micelles are extremely dynamic aggregates. Ultrasonic, temperature and pressure jump techniques have been employed to study various equilibrium constants. Rates of uptake of monomers into micellar aggregates are close to diffusion-controlled306. The residence times of the individual surfactant molecules in the aggregate are typically in the order of 1-10 microseconds307, whereas the lifetime of the micellar entity is about 1-100 miliseconds307. Factors that lower the critical micelle concentration usually increase the lifetimes of the micelles as well as the residence times of the surfactant molecules in the micelle. Due to these dynamics, the size and shape of micelles are subject to appreciable structural fluctuations. [Pg.1080]

Effect of Structure on Activity at the Critical Micelle Concentration and on the Free Energy of Micelle Formation... [Pg.73]

In recent studies, Friberg and co-workers (J, 2) showed that the 21 carbon dicarboxylic acid 5(6)-carboxyl-4-hexyl-2-cyclohexene-1-yl octanoic acid (C21-DA, see Figure 1) exhibited hydrotropic or solubilizing properties in the multicomponent system(s) sodium octanoate (decanoate)/n-octanol/C2i-DA aqueous disodium salt solutions. Hydrotropic action was observed in dilute solutions even at concentrations below the critical micelle concentration (CMC) of the alkanoate. Such action was also observed in concentrates containing pure nonionic and anionic surfactants and C21-DA salt. The function of the hydrotrope was to retard formation of a more ordered structure or mesophase (liquid crystalline phase). [Pg.117]

The formation of mixed micelles in surfactant solutions which contain two or more surfactant components can be significantly affected by the structures of the surfactants involved. The observed critical micelle concentration (cmc) is often significantly lower than would be expected based on the erne s of the pure surfactants. This clearly demonstrates that interactions between different surfactant components in the mixed micelles are taking place. [Pg.141]

The structure and properties of water soluble dendrimers, such as 46, is, in itself, a very promising area of research due to their similarity with natural micellar systems. As can be seen from the two-dimensional representation of 46 the structure contains a hydrophobic inner core surrounded by a hydrophilic layer of carboxylate groups (Fig. 12). However these dendritic micelles differ from traditional micelles in that they are static, covalently bound structures instead of dynamic associations of individual molecules. A number of studies have exploited this unique feature of dendritic micelles in the design of novel recyclable solubilization and extraction systems that may find great application in the recovery of organic materials from aqueous solutions [84,86-88]. These studies have also shown that dendritic micelles can solubilize hydrophobic molecules in aqueous solution to the same, if not greater, extent than traditional SDS micelles. The advantages of these dendritic micelles are that they do not suffer from a critical micelle concentration and therefore display solvation ability at nanomolar... [Pg.149]

A structure formed by the reversible association of am-phiphiles in apolar solvents. In inverted micelles, the polar portion of the amphiphile is concentrated in the interior of the macrostructure. Such association usually occurs with aggregation and is not typically characterized by a definite nucleation stage. Thus, inverted micelles (also referred to as inverse or reverse micelles) often fail to exhibit critical micelle concentration behavior. See Micelle... [Pg.374]

Figure 1. Various physical states of phospholipids in aqueous solution. Note the following features (a) phospholipids residing at the air/water interface are arranged such that their polar head groups maximize contact with the aqueous environment, whereas apolar side chains extend outward toward the air (b) solitary phospholipid molecules remain in equilibrium with various monolayer and bilayer structures (c) bilayer vesicles and micelles remain in equilibrium with solitary phospholipid molecules, provided that the total lipid content exceeds the critical micelle concentration. Figure 1. Various physical states of phospholipids in aqueous solution. Note the following features (a) phospholipids residing at the air/water interface are arranged such that their polar head groups maximize contact with the aqueous environment, whereas apolar side chains extend outward toward the air (b) solitary phospholipid molecules remain in equilibrium with various monolayer and bilayer structures (c) bilayer vesicles and micelles remain in equilibrium with solitary phospholipid molecules, provided that the total lipid content exceeds the critical micelle concentration.
At their critical micelle concentrations, surface active agents (such as sodium dodecyl sulfate, Triton X-100, lysolecithin, and bile salts) self-associate into spherical or rod-shaped structures. Because dilution to below the c.m.c. results in rapid disassembly or dissolution of these detergent micelles, micelles are in dynamic equilibrium with other dissolved detergent molecules in the bulk solution. [Pg.464]

Micelles can be spherical or laminar or cylindrical. Micelles tend to be approximately spherical over a fairly wide range of concentrations above CMC (critical micelle concentration) but often they are marked transitions to larger, non spherical liquid crystal structures at high concentrations. For straight chain ionic surfactants, the number of monomer units per micelle ranges between 30 and 80. [Pg.79]


See other pages where Critical micelle concentration structure is mentioned: [Pg.800]    [Pg.800]    [Pg.191]    [Pg.442]    [Pg.186]    [Pg.18]    [Pg.138]    [Pg.268]    [Pg.50]    [Pg.225]    [Pg.385]    [Pg.37]    [Pg.144]    [Pg.83]    [Pg.262]    [Pg.199]    [Pg.156]    [Pg.184]    [Pg.21]    [Pg.202]    [Pg.28]    [Pg.49]    [Pg.141]    [Pg.135]    [Pg.74]    [Pg.123]    [Pg.169]    [Pg.260]    [Pg.63]   
See also in sourсe #XX -- [ Pg.31 , Pg.32 ]




SEARCH



Critical concentration

Critical micell concentration

Critical micelle concentration

Critical micelle concentration hydrophile structure

Critical micelle concentration hydrophobe structure

Critical micelle concentration micellization

Critical micellization concentrations

Micelle concentration

Micelle structure

Micelles critical micelle concentration

Structure micellization

© 2024 chempedia.info