Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resid Cracking

Visbreaking is a mild, once-through thermal cracking process. It is used to crack resid products into fuel-oil specifications. Although some light products such as naphtha and gasoline are produced, this is not the purpose of the visbreaker. [Pg.819]

SAM Matrices Crack Resid With Lower Delta Coke... [Pg.342]

Catalytic cracking is a key refining process along with catalytic reforming and alkylation for the production of gasoline. Operating at low pressure and in the gas phase, it uses the catalyst as a solid heat transfer medium. The reaction temperature is 500-540°C and residence time is on the order of one second. [Pg.384]

Olefins are produced primarily by thermal cracking of a hydrocarbon feedstock which takes place at low residence time in the presence of steam in the tubes of a furnace. In the United States, natural gas Hquids derived from natural gas processing, primarily ethane [74-84-0] and propane [74-98-6] have been the dominant feedstock for olefins plants, accounting for about 50 to 70% of ethylene production. Most of the remainder has been based on cracking naphtha or gas oil hydrocarbon streams which are derived from cmde oil. Naphtha is a hydrocarbon fraction boiling between 40 and 170°C, whereas the gas oil fraction bods between about 310 and 490°C. These feedstocks, which have been used primarily by producers with refinery affiliations, account for most of the remainder of olefins production. In addition a substantial amount of propylene and a small amount of ethylene ate recovered from waste gases produced in petroleum refineries. [Pg.171]

Hydrocarbon, typically natural gas, is fed into the reactor to intersect with an electric arc stmck between a graphite cathode and a metal (copper) anode. The arc temperatures are in the vicinity of 20,000 K inducing a net reaction temperature of about 1500°C. Residence time is a few milliseconds before the reaction temperature is drastically reduced by quenching with water. Just under 11 kWh of energy is required per kg of acetylene produced. Low reactor pressure favors acetylene yield and the geometry of the anode tube affects the stabiUty of the arc. The maximum theoretical concentration of acetylene in the cracked gas is 25% (75% hydrogen). The optimum obtained under laboratory conditions was 18.5 vol % with an energy expenditure of 13.5 kWh/kg (4). [Pg.384]

The quantity of coproduct acetylene produced is sensitive to both the feedstock and the severity of the cracking process. Naphtha, for example, is cracked at the most severe conditions and thus produces appreciable acetylene up to 2.5 wt % of the ethylene content. On the other hand, gas oil must be processed at lower temperature to limit coking and thus produces less acetylene. Two industry trends are resulting in increased acetylene output (/) the ethylene plant capacity has more than doubled, and (2) furnace operating conditions of higher temperature and shorter residence times have increased the cracking severity. [Pg.391]

Thermal Cracking. Heavy petroleum fractions such as resid are thermally cracked in delayed cokers or flexicokers (44,56,57). The main products from the process are petroleum coke and off-gas which contain light olefins and butylenes. This stream also contains a considerable amount of butane. Process conditions for the flexicoker are more severe than for the delayed coker, about 550°C versus 450°C. Both are operated at low pressures, around 300—600 kPa (43—87 psi). Flexicokers produce much more linear butenes, particularly 2-butene, than delayed cokers and about half the amount of isobutylene (Table 7). This is attributed to high severity of operation for the flexicoker (43). [Pg.367]

The equivalent nickel content of the feed to the FCCU can vary from <0.05 ppm for a weU-hydrotreated VGO to >20 ppm for a feed containing a high resid content. The nickel and vanadium deposit essentially quantitatively on the cracking catalyst and, depending on catalyst addition rates to the FCCU, result in total metals concentrations on the equiUbrium catalyst from 100 to 10,000 ppm. [Pg.210]

Process development of the use of hydrogen as a radical quenching agent for the primary pyrolysis was conducted (37). This process was carried out in a fluidized-bed reactor at pressures from 3.7 to 6.9 MPa (540—1000 psi), and a temperature of 566°C. The pyrolysis reactor was designed to minimize vapor residence time in order to prevent cracking of coal volatiles, thus maximizing yield of tars. Average residence times for gas and soHds were quoted as 25 seconds and 5—10 rninutes. A typical yield stmcture for hydropyrolysis of a subbiturninous coal at 6.9 MPa (1000 psi) total pressure was char 38.4, oil... [Pg.287]

The combination of low residence time and low partial pressure produces high selectivity to olefins at a constant feed conversion. In the 1960s, the residence time was 0.5 to 0.8 seconds, whereas in the late 1980s, residence time was typically 0.1 to 0.15 seconds. Typical pyrolysis heater characteristics are given in Table 4. Temperature, pressure, conversion, and residence time profiles across the reactor for naphtha cracking are illustrated in Figure 2. [Pg.435]

Advanced Cracking Reactor. The selectivity to olefins is increased by reducing the residence time. This requires high temperature or reduction of the hydrocarbon partial pressure. An advanced cracking reactor (ACR) was developed jointly by Union Carbide with Kureha Chemical Industry and Chiyoda Chemical Constmction Co. (72). A schematic of this reactor is shown in Figure 6. The key to this process is high temperature, short residence time, and low hydrocarbon partial pressure. Superheated steam is used as the heat carrier to provide the heat of reaction. The burning of fuel... [Pg.442]

Radon gas is formed in the process of radioactive decay of uranium. The distribution of naturally occurring radon follows the distribution of uranium in geological formations. Elevated levels have been observed in certain granite-type minerals. Residences built in these areas have the potential for elevated indoor concentrations of radon from radon gas entering through cracks and crevices and from outgassing from well water. [Pg.388]

Solvent extraction may also be used to reduce asphaltenes and metals from heavy fractions and residues before using them in catalytic cracking. The organic solvent separates the resids into demetallized oil with lower metal and asphaltene content than the feed, and asphalt with high metal content. Figure 3-2 shows the IFP deasphalting process and Table 3-2 shows the analysis of feed before and after solvent treatment. Solvent extraction is used extensively in the petroleum refining industry. Each process uses its selective solvent, but, the basic principle is the same as above. [Pg.53]


See other pages where Resid Cracking is mentioned: [Pg.276]    [Pg.188]    [Pg.229]    [Pg.255]    [Pg.276]    [Pg.188]    [Pg.229]    [Pg.255]    [Pg.171]    [Pg.26]    [Pg.386]    [Pg.389]    [Pg.203]    [Pg.125]    [Pg.126]    [Pg.508]    [Pg.527]    [Pg.322]    [Pg.419]    [Pg.366]    [Pg.497]    [Pg.509]    [Pg.288]    [Pg.288]    [Pg.432]    [Pg.432]    [Pg.435]    [Pg.442]    [Pg.699]    [Pg.145]    [Pg.126]    [Pg.215]    [Pg.230]    [Pg.233]    [Pg.73]    [Pg.291]    [Pg.291]    [Pg.983]    [Pg.59]    [Pg.69]    [Pg.70]   
See also in sourсe #XX -- [ Pg.557 ]




SEARCH



Catalytic cracking resid conversion

Resid Thermal Cracking

Resid catalytic cracking

Residence time catalytic cracking

Steam cracking Residence time

© 2024 chempedia.info