Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion secondary

Secondary coolants frequently are called brines because such fluids originally were mixtures of salts and water. Common refrigeration brines are water solutions of calcium chloride or sodium chloride. These brines must be inhibited against corrosion. [Pg.509]

Organic fluids also are mixed with water to serve as secondary coolants. The most commonly used fluid is ethylene glycol. Others include propjiene glycol, methanol (qv), ethanol, glycerol (qv), and 2-propanol (see Propyl alcohols, isopropyl alcohol). These solutions must also be inhibited against corrosion. Some of these, particularly methanol, may form flammable vapor concentrations at high temperatures. [Pg.509]

This secondary reaction starts at about 180°C, but the mass must be heated to 350—400°C to bring the reaction to completion and produce a nitrate-free product. The off-gases are extremely corrosive and poisonous, and considerable attention and expense is required for equipment maintenance and caustic-wash absorption towers. Treatment of the alkaline wash Hquor for removal of mercury is required both for economic reasons and to comply with governmental regulations pertaining to mercury ia plant effluents. [Pg.114]

Boron, in the form of boric acid, is used in the PWR primary system water to compensate for fuel consumption and to control reactor power (3). The concentration is varied over the fuel cycle. Small amounts of the isotope lithium-7 are added in the form of lithium hydroxide to increase pH and to reduce corrosion rates of primary system materials (4). Primary-side corrosion problems are much less than those encountered on the secondary side of the steam generators. [Pg.190]

Recirculating Ste m Generator. The corrosion performance of many RSGs in commercial power stations in the United States has been marginal (2). Many tube bundles have had to be replaced. Many tubes have been plugged or sleeved with inserts as a result of excessive corrosion on the secondary side. [Pg.194]

Monofunctional, cyclohexylamine is used as a polyamide polymerization chain terminator to control polymer molecular weight. 3,3,5-Trimethylcyclohexylamines ate usehil fuel additives, corrosion inhibitors, and biocides (50). Dicyclohexylamine has direct uses as a solvent for cephalosporin antibiotic production, as a corrosion inhibitor, and as a fuel oil additive, in addition to serving as an organic intermediate. Cycloahphatic tertiary amines are used as urethane catalysts (72). Dimethylcyclohexylarnine (DMCHA) is marketed by Air Products as POLYCAT 8 for pour-in-place rigid insulating foam. Methyldicyclohexylamine is POLYCAT 12 used for flexible slabstock and molded foam. DM CHA is also sold as a fuel oil additive, which acts as an antioxidant. StericaHy hindered secondary cycloahphatic amines, specifically dicyclohexylamine, effectively catalyze polycarbonate polymerization (73). [Pg.212]

Sodium is used as a heat-transfer medium in primary and secondary cooling loops of Hquid-metal fast-breeder power reactors (5,155—157). Low neutron cross section, short half-life of the radioisotopes produced, low corrosiveness, low density, low viscosity, low melting point, high boiling point, high thermal conductivity, and low pressure make sodium systems attractive for this appHcation (40). [Pg.169]

The presence of ammonia during hydrogenation suppresses formation of secondary amines and inhibits hydrogenation of double bonds in unsaturated nitriles. Eatty amines are used as corrosion inhibitors, flotation agents, quaternary salts for sanitizing agents and textile fabric softeners, and surface-active agents. [Pg.85]

One principal use of cyclohexanol has been in the manufacture of esters for use as plasticizers (qv), ie, cyclohexyl and dicyclohexyl phthalates. In the finishes industry, cyclohexanol is used as a solvent for lacquers, shellacs, and varnishes. Its low volatiUty helps to improve secondary flow and to prevent blushing. It also improves the miscibility of cellulose nitrate and resin solutions and helps maintain homogeneity during drying of lacquers. Reaction of cyclohexanol with ammonia produces cyclohexylamine [108-91-8], a corrosion inhibitor. Cyclohexanol is used as a stabilizer and homogenizer for soaps and synthetic detergent emulsions. It is used also by the textile industry as a dye solvent and kier-boiling assistant (see Dye carriers). [Pg.426]

Wastage was caused by crevice corrosion, accelerated by the difference in tube and tube sheet metallurgies. The brass tube, being more noble, was cathodically protected by corrosion of the surrounding mild steel tube sheet. However, the galvanic effect was secondary to the primary cause of failure, namely, crevice corrosion. [Pg.35]

SCC has been defined as failure by cracking under the combined action of corrosion and stress (Fig. 9.1). The stress and corrosion components interact S3mergistically to produce cracks, which initiate on the surface exposed to the corrodent and propagate in response to the stress state. They may run in any direction but are always perpendicular to the principal stress. Longitudinal or transverse crack orientations in tubes are common (Figs. 9.2 and 9.3). Occasionally, both longitudinal and transverse cracks are present on the same tube (Fig. 9.4). Less frequently, SCC is a secondary result of another primary corrosion mode. In such cases, the cracking, rather than the primary corrosion, may be the actual cause of failure (Fig. 9.5). [Pg.201]

Primers are required to be resistant to all of the same fluids and environments as the adhesive, and are in addition expected to be compatible with secondary finishes such as corrosion and fluid resistant primers applied to cured bond assemblies. The most commonly used primers for 250°F cured epoxy adhesives also have active corrosion inhibitors themselves to combat corrosion at bondlines. This last requirement is somewhat dated, evolving from the severe corrosion and delamination problems experienced before U.S. airframe manufacturers adopted durable surface treatments. [Pg.1154]

Wet scrubbers rely on a liquid spray to remove dust particles from a gas stream. They are primarily used to remove gaseous emissions, with particulate control a secondary function. The major types are venturi scrubbers, jet (fume) scrubbers, and spray towers or chambers. Venturi scrubbers consume large quantities of scrubbing liquid (such as water) and electric power and incur high pressure drops. Jet or fume scrubbers rely on the kinetic energy of the liquid stream. The typical removal efficiency of a jet or fume scrubber (for particles 10 g. or less) is lower than that of a venturi scrubber. Spray towers can handle larger gas flows with minimal pressure drop and are therefore often used as precoolers. Because wet scrubbers may contribute to corrosion, removal of water from the effluent gas of the scrubbers may be necessary. [Pg.21]

A secondary seal loop is provided for water withdrawal during major blows when turbulence at the downstream overflow connection to the primary seal loop interferes with normal drainage. Extending the base of the flare stack 3 diameters below the sloped inlet line provides vapor disengaging for the secondary seal leg. The bottom of the stack and inlet line up to 1.5 m above the seal water level are gunite lined for corrosion protection. [Pg.275]

Diethanolamine Systems. Diethanolamine (DEA) is a secondary amine that has in recent years replaced MEA as the most common chemical solvent., s a secondary amine, DEA is a weaker base than MEA, and therefore DEA systems do not typically suffer the same corrosion problems. In addition, DEA has lower vapor loss, requires less heat for regeneration per mole of acid gas removed, and does not require a reclaimei. DEA reacts with H iS and COt as follows ... [Pg.165]


See other pages where Corrosion secondary is mentioned: [Pg.114]    [Pg.114]    [Pg.4]    [Pg.56]    [Pg.129]    [Pg.190]    [Pg.194]    [Pg.132]    [Pg.49]    [Pg.149]    [Pg.206]    [Pg.50]    [Pg.537]    [Pg.10]    [Pg.148]    [Pg.255]    [Pg.233]    [Pg.292]    [Pg.402]    [Pg.512]    [Pg.6]    [Pg.280]    [Pg.2387]    [Pg.2422]    [Pg.368]    [Pg.59]    [Pg.290]    [Pg.431]    [Pg.74]    [Pg.127]    [Pg.445]    [Pg.875]    [Pg.989]    [Pg.366]    [Pg.49]    [Pg.1099]   
See also in sourсe #XX -- [ Pg.301 ]




SEARCH



© 2024 chempedia.info