Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization chain termination

The theoretical molecular weight distributions for cationic chain polymerizations are the same as those described in Sec. 3-11 for radical chain polymerizations terminating by reactions in which each propagating chain is converted to one dead polymer molecule, that is, not including the formation of a dead polymer molecule by bimolecular coupling of two propagating chains. Equations 2-86 through 2-89, 2-27, 2-96, and 2-97 withp defined by Eq. 3-185... [Pg.391]

The theoretical molecular weight distributions for cationic chain polymerizations (see Problem 8.30) are the same as those described in Chapter 6 for radical chain polymerizations terminating by disproportionation, i.e., where each propagating chain yields one dead polymer molecule. The poly-dispersity index (PDI = DP /DPn) has a limit of 2. Many cationic polymerizations proceed with rapid initiation, which narrows the molecular weight distribution (MDI). In the extreme case where termination and transfer reactions are very slow or nonexistent, this would yield a very narrow MDI with PDI close to one (p. 681). [Pg.732]

The theoretical molecular weight distributions for cationic chain polymerizations (see Problem 8.25) are the same as those described in Chapter 6 for radical chain polymerizations terminating by disproportionation, i.e., where each propagating... [Pg.529]

In ionic polymerizations termination by combination does not occur, since all of the polymer ions have the same charge. In addition, there are solvents such as dioxane and tetrahydrofuran in which chain transfer reactions are unimportant for anionic polymers. Therefore it is possible for these reactions to continue without transfer or termination until all monomer has reacted. Evidence for this comes from the fact that the polymerization can be reactivated if a second batch of monomer is added after the initial reaction has gone to completion. In this case the molecular weight of the polymer increases, since no new growth centers are initiated. Because of this absence of termination, such polymers are called living polymers. [Pg.405]

The minimum polydispersity index from a free-radical polymerization is 1.5 if termination is by combination, or 2.0 if chains ate terminated by disproportionation and/or transfer. Changes in concentrations and temperature during the reaction can lead to much greater polydispersities, however. These concepts of polymerization reaction engineering have been introduced in more detail elsewhere (6). [Pg.436]

Because dideoxynucleotides lack 3 -OH groups, these nucleotides cannot serve as acceptors for 5 -nucleotide addition in the polymerization reaction, and thus the chain is terminated where they become incorporated. The concentrations of the four deoxynucleotides and the single dideoxynucleotide in each reaction mixture are adjusted so that the dideoxynucleotide is incorporated infrequently. Therefore, base-specific premature chain termination is only a random, occasional event, and a population of new strands of varying length is synthesized. Four reactions are run, one for each dideoxynucleotide, so that termination, although random, can occur everywhere in the sequence. In each mixture, each newly synthesized strand has a dideoxynucleotide at its 3 -end, and its presence at that position demonstrates that a base of that particular kind was specified by the template. A radioactively labeled dNTP is included in each reaction mixture to provide a tracer for the products of the polymerization process. [Pg.358]

The thermal (or photochemical) decomposition of the azo group gives rise to a radically initiated polymerization. The reactive site F, the transformation site, however, can, depending on its chemical nature, initiate a condensation or addition type reaction. It can also start radical or ionic polymerizations. F may also terminate a polymerization or even enable the azo initiator to act as a monomer in chain polymerizations. [Pg.735]

With respect to the initiation of cationic chain polymerizations, the reaction of chlorine-terminated azo compounds with various silver salts has been thoroughly studied. ACPC, a compound often used in condensation type reactions discussed previously, was reacted with Ag X , X, being BF4 [10,61] or SbFa [11,62]. This reaction resulted in two oxocarbenium cations, being very suitable initiating sites for cationic polymerization. Thus, poly(tetrahydrofuran) with Mn between 3 x 10 and 4 x lO containing exactly one central azo group per molecule was synthesized [62a]. Furthermore, N-... [Pg.741]

In anionic polymerization, as in carbonium ion polymerization, termination does not involve bimolecular reaction between two growing chains. Neither can recombination of ions lead to termination, since a carbon-metal bond is highly polar, in the case of alkali metals frequently completely ionized, and in every case very reactive. The termination step leading to the formation of a terminal C=C double bond is not too probable. This reaction involves the formation of a metal hydride, and this does not contribute greatly to the driving force. Consequently, such a termination is observed at higher temperatures only and it is probably more common in coordination polymerization where the metals involved are less electropositive. [Pg.176]

Transfer to initiator can be a major complication in polymerizations initiated by diacyl peroxides. The importance of the process typically increases with monomer conversion and the consequent increase in the [initiator] [monomer] ratio.9 105160 162 In BPO initiated S polymerization, transfer to initiator may be lire major chain termination mechanism. For bulk S polymerization with 0.1 M BPO at 60 °C up to 75% of chains are terminated by transfer to initiator or primary radical termination (<75% conversion).7 A further consequence of the high incidence of chain transfer is that high conversion PS formed with BPO initiator tends to have a much narrower molecular weight distribution than that prepared with other initiators (e.g. AIBN) under similar conditions. [Pg.85]

To avoid these stability problems, it is necessary to minimize the proportion of chains that terminate by radical-radical reaction. One way of achieving this is to conduct the polymerization in the presence of an appropriate chain transfer agent. For example, if polymerization is performed in the presence of a H-donor chain transfer agent, conditions can be chosen such that most chains terminate by hydrogen-atom transfer. Bagby et al.iA examined the thermal stability of PMMA formed with dodecanethiol. These polymer chains will then possess, more... [Pg.418]

Surfactants are prepared which contain carboxylic acid ester or amide chains and terminal acid groups selected from phosphoric acid, carboxymethyl, sulfuric acid, sulfonic acid, and phosphonic acid. These surfactants can be obtained by reaction of phosphoric acid or phosphorus pentoxide with polyhydroxystearic acid or polycaprolactone at 180-190°C under an inert gas. They are useful as polymerization catalysts and as dispersing agents for fuel, diesel, and paraffin oils [69]. [Pg.565]

X indicates a small substituent, which may be an atom such as hydrogen (H) or chlorine (Cl) or it may he a group such as methyl (CH3), cyano (CN), carhoxyl (COOH), carbomethoxy (COOCH3), etc. The growing chain is terminated by collision with another chain or other radical source or by one of several other mechanisms. The number of monomer units in the polymer chain is the degree of polymerization, abbreviated DP. If the degree of polymerization is very low, the product is sometimes referred to as an oligomer. [Pg.107]

Each primary radical which enters an inactive particle is presumed to start the growth of a new polymer chain, and this chain is terminated almost immediately following capture of another radical. If it is assumed that chain transfer may be disregarded, the average degree of polymerization under these conditions should equal the ratio of the rate of growth of a chain to the frequency p/N of capture of primary radicals i.e. > ... [Pg.212]

Radical Polymerization. Radical chain polymerization involves initiation, propagation, and termination. Consider the polymerization of ethylene. Initiation typically involves thermal homolysis of an initiator such as benzoyl peroxide... [Pg.11]

Sodium 4-oxy-2,2,6,6-tetramethyl-l-piperidinyloxy, TEMPONa, was used as a bifunctional initiator for the synthesis of PEO-fc-PS block copolymers [133]. Initially the ROP of EO was performed in THF at 60 °C to provide narrow molecular weight distribution chains with terminal TEMPO moieties. Using these functionalized PEO chains the polymerization of styrene was... [Pg.73]

Phenyl and triphenylmethyl radicals generated from 6 contribute to the initiation and the termination, respectively, resulting in polymer 18 because of the remarkably different reactivities of these radicals (Eq. 21). The co-chain end terminated with 1 thermally redissociates to induce further polymerization. Therefore, the polymerization proceeded via a mechanism close to the model in Eq. (18). The recombination product of methyl isobutyryl radical and 1 was reported to have a quinonoide structure [82], suggesting a similar structure of the chain end, 18b. [Pg.86]

Equilibrium studies under anaerobic conditions confirmed that [Cu(HA)]+ is the major species in the Cu(II)-ascorbic acid system. However, the existence of minor polymeric, presumably dimeric, species could also be proven. This lends support to the above kinetic model. Provided that the catalytically active complex is the dimer produced in reaction (26), the chain reaction is initiated by the formation and subsequent decomposition of [Cu2(HA)2(02)]2+ into [CuA(02H)] and A -. The chain carrier is the semi-quinone radical which is consumed and regenerated in the propagation steps, Eqs. (29) and (30). The chain is terminated in Eq. (31). Applying the steady-state approximation to the concentrations of the radicals, yields a rate law which is fully consistent with the experimental observations ... [Pg.404]

Then, they depend also on the viscosity of the system. Specific diffusion control is characteristic of fast reactions like fluorescence quenching. In polymer formation, specific diffusion control is responsible for the acceleration of chain polymerization due to the retardation of the termination by recombination of two macroradicals (Trommsdorff effect). Step reactions are usually too slow to exhibit a dependence on translational diffusion also, the temperature dependence of their rate constants is of the Arrhenius type. [Pg.3]

Note 1 A chain polymerization consists of initiation and propagation reactions, and may also include termination and chain-transfer reactions. [Pg.17]


See other pages where Polymerization chain termination is mentioned: [Pg.278]    [Pg.363]    [Pg.426]    [Pg.493]    [Pg.526]    [Pg.480]    [Pg.713]    [Pg.751]    [Pg.452]    [Pg.6]    [Pg.223]    [Pg.578]    [Pg.482]    [Pg.54]    [Pg.384]    [Pg.3]    [Pg.44]    [Pg.113]    [Pg.11]    [Pg.25]    [Pg.27]    [Pg.39]    [Pg.40]    [Pg.36]    [Pg.210]    [Pg.130]    [Pg.72]    [Pg.61]    [Pg.89]   
See also in sourсe #XX -- [ Pg.35 ]

See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Alkenes, chain polymerization termination

Anionic chain polymerization spontaneous termination

Anionic chain polymerization termination

Cationic chain polymerization termination

Cationic polymerization spontaneous chain termination

Chain termination

Chain termination emulsion polymerization

Chain termination in free radical polymerization

Chain termination stereoselective polymerization

Chain terminators

Free radical polymerization chain length dependent termination

Free radical polymerization chain termination

Free radical polymerization propagation, Chain termination

Olefin polymerization, chain termination

Olefins coordination polymerization chain termination

Polymerization terminator)

Radical chain polymerization termination

Terminal 1,4-polymerization

Terminal chains

Terminated chains, controlled radical polymerization

Termination, chain length dependent radical polymerization kinetics

Ziegler-Natta polymerization chain termination reactions

© 2024 chempedia.info