Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper seawater analysis

Montgomery and Peterson [675] showed that ammonium nitrate used as a matrix modifier in seawater analysis to eliminate the interference of sodium chloride degrades the pyrolytic coating on graphite-furnace tubes. The initially enhanced sensitivities for copper, manganese, and iron are maintained for up to 15 atomisations. There is then a rapid decline to a constant lower sensitivity. The characteristics depend strongly on the particular lot of furnace tubes. To... [Pg.241]

Scarponi et al. [93] concluded that filtration of seawater through uncleaned membrane filters shows positive contamination by cadmium, lead, and copper. In the first filtrate fractions, the trace metal concentration maybe increased by a factor of two or three. During filtration, the soluble impurities are leached from the filter, which is progressively cleaned, and the metal concentration in the filtrate, after passage of 0.8 -11 of seawater, reaches a stable minimum value. Thus it is recommended that at least one litre of seawater at natural pH be passed through uncleaned filters before aliquots for analysis are taken... [Pg.52]

Sunda and Hanson [247] have used ligand competition techniques for the analysis of free copper (II) in seawater. This work demonstrated that only 0.02 -2% of dissolved copper (II) is accounted for by inorganic species. (i.e., Cu2+, CuC03, Cu(OH)+, CuCl+, etc.) the remainder is associated with organic complexes. Clearly, the speciation of copper (II) in seawater is markedly different from that in fresh water. [Pg.169]

A Cis column loaded with sodium diethyldithiocarbamate has been used to extract copper and cadmium from seawater. Detection limits for analysis by graphite furnace atomic absorption spectrometry were 0.024 pg/1 and 0.004 xg/l, respectively [283]. [Pg.172]

Prior to the introduction of ion-selective electrode techniques, in situ monitoring of free copper (II) in seawater was not possible due to the practical limitations of existing techniques (e.g., ligand competition and bacterial reactions). Ex situ analysis of free copper (II) is prone to experimental error, as the removal of seawater from the ocean can lead to speciation of copper (II). Potentially, a copper (II) ion electrode is capable of rapid in situ monitoring of environmental free copper (II). Unfortunately, copper (II) has not been used widely for the analysis of seawater due to chloride interference that is alleged to render the copper nonfunctional in this matrix [288]. [Pg.172]

Garcia-Monco Carra et al. [296] have described a hybrid mercury film electrode for the voltammetric analysis of copper (and lead) in acidified seawater. Mercury plating conditions for preparing a consistently reproducible mercury film electrode on a glassy carbon substrate in acid media are evaluated. It is found that a hybrid electrode , i.e., one preplated with mercury and then replated with mercury in situ with the sample, gives very reproducible results in the analysis of copper in seawater. Consistently reproducible electrode performance allows for the calculation of a cell constant and prediction of the slopes of standard addition plots, useful parameters in the study of copper speciation in seawater. [Pg.173]

Background copper levels in seawater have been measured by electron spin resonance techniques [300]. The copper was extracted from the seawater into a solution of 8-hydroxyquinoline in ethyl propionate (3 ml extractant per 100 ml seawater), and the organic phase (1 ml) was introduced into the electron spin resonance tube for analysis. Signal-to-noise ratio was very good for the four-line spectrum of the sample and of the sample spiked with 4 and 8ng Cu2+. The graph of signal intensity versus concentration of copper was rectilinear over the range 2-10 xg/l of seawater, and the coefficient of variation was 3%. [Pg.174]

Marvin et al. [302] have discussed the effects of sample filtration on the determination of copper in seawater, and concluded that glass filters could seriously affect the reliability of subsequent analysis. [Pg.174]

Potentiometric stripping analysis has been applied by Sheffrin and Williams [320] to the measurement of copper in seawater at environmental pH. The advantage of this technique is that it can be used to specifically measure the biologically active labile copper species in seawater samples at desired pH values. The method was applied to seawater samples that had passed a 0.45 pm Millipore filter. Samples were studied both at high and at low pH values. [Pg.177]

Neutron activation analysis has been used [329] to determine total copper in seawater. [Pg.179]

Garcia-Monco Carra et al. [405] have discussed the use of a hybrid mercury film electrode for the voltammetric analysis of lead (and copper) in acidified seawater. [Pg.190]

Olsen et al. [660] used a simple flow injection system, the FIAstar unit, to inject samples of seawater into a flame atomic absorption instrument, allowing the determination of cadmium, lead, copper, and zinc at the parts per million level at a rate of 180-250 samples per hour. Further, online flow injection analysis preconcentration methods were developed using a microcolumn of Chelex 100 resin, allowing the determination of lead at concentrations as low as 10 pg/1, and of cadmium and zinc at 1 pg/1. The sampling rate was between 30 and 60 samples per hour, and the readout was available within 60-100 seconds after sample injection. The sampling frequency depended on the preconcentration required. [Pg.238]

Fang et al. [661] have described a flow injection system with online ion exchange preconcentration on dual columns for the determination of trace amounts of heavy metal at pg/1 and sub-pg/1 levels by flame atomic absorption spectrometry (Fig. 5.17). The degree of preconcentration ranges from a factor of 50 to 105 for different elements, at a sampling frequency of 60 samples per hour. The detection limits for copper, zinc, lead, and cadmium are 0.07, 0.03, 0.5, and 0.05 pg/1, respectively. Relative standard deviations are 1.2-3.2% at pg/1 levels. The behaviour of the various chelating exchangers used was studied with respect to their preconcentration characteristics, with special emphasis on interferences encountered in the analysis of seawater. [Pg.238]

Cabezon et al. [662] simultaneously separated copper, cadmium, and cobalt from seawater by coflotation with octadecylamine and ferric hydroxide as collectors prior to analysis of these elements by flame atomic absorption spectrometry. The substrates were dissolved in an acidified mixture of ethanol, water, and methyl isobutyl ketone to increase the sensitivity of the determination of these elements by flame atomic absorption spectrophotometry. The results were compared with those of the usual ammonium pyrrolidine dithiocarbamate/methyl isobutyl ketone extraction method. While the mean recoveries were lower, they were nevertheless considered satisfactory. [Pg.238]

Berman et al. [735] have shown that if a seawater sample is subjected to 20-fold preconcentration by one of the above techniques, then reliable analysis can be performed by ICP-AES (i.e., concentration of the element in seawater is more than five times the detection limit of the method) for iron, manganese, zinc, copper, and nickel. Lead, cobalt, cadmium, chromium, and arsenic are below the detection limit and cannot be determined reliably by ICP-AES. These latter elements would need at least a hundredfold preconcentration before they could be reliably determined. [Pg.258]

Field et al. [747] used ICP high-resolution mass spectrometry to determine vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, cadmium, and lead in seawater. Each analysis required 50 p,l sample and a 6 minute analysis time. [Pg.264]

Scarponi et al. [781] studied the influence of an unwashed membrane filter (Millpore type HA, 47 mm diameter) on the cadmium, lead, and copper concentrations of filtered seawater. Direct simultaneous determination of the metals was achieved at natural pH by linear-sweep anodic stripping voltammetry at a mercury film electrode. These workers recommended that at least 1 litre of seawater be passed through uncleaned filters before aliquots for analysis are taken the same filter can be reused several times, and only the first 50-100 ml of filtrate need be discarded. Samples could be stored in polyethylene containers at 4 °C for three months without contamination, but losses of lead and copper occurred after five months of storage. [Pg.268]

Nygaard et al. [752] compared two methods for the determination of cadmium, lead, and copper in seawater. One method employs anodic stripping voltammetry at controlled pH (8.1,5.3 and 2.0) the other involves sample pretreatment with Chelex 100 resin before ASV analysis. Differences in the results are discussed in terms of the definition of available metal and differences in the analytical methods. [Pg.269]

Holzbecker and Ryan [825] determined these elements in seawater by neutron activation analysis after coprecipitation with lead phosphate. Lead phosphate gives no intense activities on irradiation, so it is a suitable matrix for trace metal determinations by neutron activation analysis. Precipitation of lead phosphate also brings down quantitatively the insoluble phosphates of silver (I), cadmium (II), chromium (III), copper (II), manganese (II), thorium (IV), uranium (VI), and zirconium (IV). Detection limits for each of these are given, and thorium and uranium determinations are described in detail. Gamma activity from 204Pb makes a useful internal standard to correct for geometry differences between samples, which for the lowest detection limits are counted close to the detector. [Pg.282]

Although ICP-ES is a multielement technique, its inferior detection limits (relative to GFA-AS) necessitate the processing of relatively large volumes of seawater. 250 mL aliquots were found to be useful for the analysis of iron, manganese, zinc, copper, and nickel. Extension of the method to include cadmium, cobalt, chromium, and lead would require improvements in the preconcentration procedure. [Pg.336]

A significant proportion of the needs for reference materials for seawater trace metal studies would be addressed by the preparation of these materials. Although the total iron concentration of these reference materials should be provided, these materials clearly will be useful for studies of other important metals such as zinc, manganese, copper, molybdenum, cobalt, vanadium, lead, aluminum, cadmium, and the rare earth elements. With careful planning, such water samples should be useful for analysis of dissolved organic substances as well. The collection sites should be chosen carefully to provide both a high and a low concentration reference material for as many metals as possible. [Pg.106]

Coale, K. H., and Mart, L. (1985) Analysis of Seawater for Dissolved Cadmium, Copper and Lead An Inter-comparison of Voltammetric and Atomic Absorption Methods. Mar. Chem. 17, 285-300. [Pg.942]

Anderson (11) was the first to report on the use of FIA for the analysis of seawater micronutrients. He developed a method for the simultaneous determination of nitrate and nitrite. The chemical reactions for the analysis of nitrate were based on the reduction of nitrate to nitrite by a copper-ized cadmium column placed in the flow path. The nitrite was then analyzed as an azo dye (11). This reaction sequence is conventionally used in both segmented CFA and manual analyses of nitrate and nitrite in seawater (2, 6, 7). The detection limits are 0.1 fxM for nitrate and 0.05 juM for nitrite. [Pg.16]

The chromatographic procedure intially investigated was reverse-phase liquid chromatography (RPLC) using Cig-bonded silica gel. This technique has been used previously for the preconcentration of trace metals from seawater prior to analysis by atomic absorption spectrophotometry (23, 24) and for the isolation of organically bound copper from seawater (4). These methods were modified and adapted for automation. [Pg.123]

A rapid technique has been developed for quantitatively concentrating several trace metals from aqueous solution. The metals are co-precipitated as dithiocarbamate chelates by adding an excess of another dissolved metal. This technique has been coupled with atomic absorption analysis for the precise determination of nmol/kg quantities of copper in seawater. Radiotracer experiments show that nickel, iron, and cadmium are also co-precipUated by this technique under proper experimental conditions. [Pg.44]


See other pages where Copper seawater analysis is mentioned: [Pg.259]    [Pg.286]    [Pg.88]    [Pg.140]    [Pg.173]    [Pg.178]    [Pg.241]    [Pg.245]    [Pg.276]    [Pg.278]    [Pg.287]    [Pg.18]    [Pg.75]    [Pg.145]    [Pg.142]    [Pg.2895]    [Pg.2988]    [Pg.117]    [Pg.118]    [Pg.45]    [Pg.49]    [Pg.55]    [Pg.56]    [Pg.61]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Copper analysis

Copper seawater

Seawater analysis

© 2024 chempedia.info