Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper galvanic corrosion

Shima S, Fukunaga A, Tsujimura M. Effects of liner metal and CMP slurry oxidizer on copper galvanic corrosion. ECS Trans 2007 11(6) 285—95. [Pg.45]

As the NDE is a phenomenon due to the unique electrochemical behaviour of Mg alloys, the error caused by the NDE effect as discussed above is not present in steel, nickel, or copper galvanic corrosion. Apart from the NDE-induced error, another source of error is that anodic polarization or the galvanic current does not always reflect the real galvanic corrosion rate of a metal. This is particularly true for any metal under weak anodic polarization. It is well known that ... [Pg.475]

Vanadium is resistant to attack by hydrochloric or dilute sulfuric acid and to alkali solutions. It is also quite resistant to corrosion by seawater but is reactive toward nitric, hydrofluoric, or concentrated sulfuric acids. Galvanic corrosion tests mn in simulated seawater indicate that vanadium is anodic with respect to stainless steel and copper but cathodic to aluminum and magnesium. Vanadium exhibits corrosion resistance to Hquid metals, eg, bismuth and low oxygen sodium. [Pg.382]

The most serious form of galvanic corrosion occurs in cooling systems that contain both copper and steel alloys. It results when dissolved copper plates onto a steel surface and induces rapid galvanic attack of the steel. The amount of dissolved copper required to produce this effect is small and the increased corrosion is difficult to inhibit once it occurs. A copper corrosion inhibitor is needed to prevent copper dissolution. [Pg.267]

Aluminum is not embrittled by low temperatures and is not subject to external corrosion when exposed to normal atmospheres. At 200°C (400°F) its strength is less than half that at room temperature. It is attacked by alkahes, by traces of copper, nickel, mercuiy, and other heaw-metal ions, and by prolonged contact with wet insiilation. It suffers from galvanic corrosion when coupled to copper, nickel, or lead-... [Pg.971]

Area effects in galvanic corrosion are very important. An unfavorable area ratio is a large cathode and a small anode. Corrosion of the anode may be 100 to 1,000 times greater than if the two areas were the same. This is the reason why stainless steels are susceptible to rapid pitting in some environments. Steel rivets in a copper plate will corrode much more severely than a steel plate with copper rivets. [Pg.2418]

Copper alloys often show only weak crevice corrosion. This is especially the case if the copper alloy is coupled to a less noble alloy such as steel. The corrosion of the steel is stimulated by the galvanic effect caused by the coupling of dissimilar metals. Hence, the sacrificial corrosion of the steel protects the copper alloy (Fig. 2.9). See Chap. 16, Galvanic Corrosion. ... [Pg.21]

Galvanic corrosion may also occur by transport of relatively noble metals, either as particulate or as ions, to the surface of an active metal. For example, ions of copper, perhaps resulting from corrosion or erosion-corrosion at an upstream site, may be carried by cooling water to the surfaces of aluminum, steel, or even stainless steel components. If the ions are reduced and deposit on the component surfaces, localized galvanic corrosion may result. [Pg.358]

When possible, avoid coupling materials having widely dissimilar galvanic potentials. If this cannot he avoided, make use of favorable area ratios by giving the active metal a large exposed area relative to the noble metal. For example, copper or copper-based alloy tubes may be joined to a steel tube sheet. Because of the favorable area ratio in this case, a relatively inexpensive steel tube sheet may be intentionally substituted for a bronze or a brass tube sheet if thickness specifications allow for a small amount of galvanic corrosion of the steel. [Pg.364]

Similarly, graphitically corroded cast iron (see Chap. 17) can assume a potential approximately equivalent to graphite, thus inducing galvanic corrosion of components of steel, uncorroded cast iron, and copper-based alloys. Hence, special precautions must be exercised when dealing with graphitically corroded pump impellers and pump casings (see Cautions in Chap. 17). [Pg.366]

Aluminum components are sensitive to ions of heavy metals, especially copper. To avoid localized galvanic corrosion of the aluminum by metallic copper reduced from copper ions, care must be exercised to prevent heavy metal ions from entering aluminum components. Note the recommendations under Elimination. ... [Pg.366]

Care must be exercised when installing stainless steel inserts in the inlet or exit end of copper or copper-alloy tubes, since galvanic corrosion can occur at the tuhe-insert junction. [Pg.366]

Galvanic corrosion results when two dissimilar metals are in contact, thus forming a path for the transfer of electrons. The contact may be in the form of a direct connection (e.g., a steel union joining two lengths of copper... [Pg.13]

Clad metals are candidates for galvanic corrosion along exposed edges. An example is copper/aluminum clad to aluminum. [Pg.38]

Heat exchangers that utilize copper coils are potential candidates for galvanic corrosion due to dissolved copper salts interacting with the galvanized steel shell. This problem can be avoided by nickel plating the coils. The coils then can be separated from direct contact with the vessel via insulation. Also, it is preferable to conduct the water on the tube side of heat exchangers. [Pg.42]

Solar water heating declined in Southern California in the 1920s due to the development of natural gas, but it continued in Florida where natural gas was very expensive. In 1941 more than half Miami s population had solar water heaters, and more than 80 percent of new homes built then were equipped with solar water heaters. By the end of the 1950s in Florida, solar water heating was displaced by electricity as the price dropped and the storage tanks of solar water heaters failed because of galvanic corrosion from connecting steel tanks to copper collectors. [Pg.1215]

If conditions are such as to require a duplex tube, it is quite likely that a plain end detail for the tube will not be satisfactory. Grooved or serrated joints are recommended for this type of tube, and the ends should be flared or beaded. Table 10-8 gives recommended flare or bell radii for copper-based alloys. Also see Table 10-8A. In service where galvanic corrosion or other corrosive action may take place on the outside material used in the tube, a ferrule of inside tube... [Pg.34]

Avoid using copper-based compounds such as copper carbonate. Copper can plate out on steel and set up galvanic corrosion cells, resulting in accelerated corrosion of the steel. [Pg.1341]

Galvanic corrosion is the enhanced corrosion of one metal by contact with a more noble metal. The two metals require only being in electrical contact with each other and exposing to the same electrolyte environment. By virtue of the potential difference that exists between the two metals, a current flows between them, as in the case of copper and zinc in a Daniell cell. This current dissolves the more reactive metal (zinc in this case), simultaneously reducing the corrosion rate of the less reactive metal. This principle is exploited in the cathodic protection (Section 53.7.2) of steel structures by the sacrificial loss of aluminum or zinc anodes. [Pg.893]

There is an accelerating trend away from the use of lead-containing solders in contact with potable water. The effects of galvanic corrosion of one of the substitute alloys (Sn3%Ag) in contact with a number of other metals including copper have therefore been studied . The corrosion of tin/Iead alloys in different electrolytes including nitrates, nitric and acetic acids, and citric acid over the pH range 2-6 were reported. The specific alloy Pb/15%Sn was studied in contact with aqueous solutions in the pH range... [Pg.809]

Wood preservatives appear not to affect emission of corrosive vapours from wood, suggesting that the hydrolysis of acetyl polysaccharides is chemical, not biochemical. Some copper-base preservatives can give enough leachable copper ions to cause galvanic corrosion of other metals, notably aluminium and steel. [Pg.969]

It has been shown that chromium is virtually unattacked by the CASS test solution Nickel, on the other hand, is corroded at a substantial rate (about 0-072mm/y), the presence of the copper ions tending to maintain the nickel in an active state . Thus, in the CASS test (and in the Corrodkote test as well) accelerated galvanic corrosion of the nickel occurs at any discontinuities in the chromium layer. Good correlation between the results of the CASS test and the performance of plated parts in service has been reported . [Pg.1024]

The soluble copper ammonia ion passes through the condensate system and plates out as a cathode on steel surfaces in the deaerator, heaters, economizer, and the boiler itself. A secondary galvanic corrosion process is initiated that damages the surrounding steel by forming ferrous hydroxide and releasing copper and ammonia. The ammonia carries over into the steam, and the entire corrosion process repeats itself. [Pg.293]


See other pages where Copper galvanic corrosion is mentioned: [Pg.71]    [Pg.68]    [Pg.274]    [Pg.75]    [Pg.71]    [Pg.68]    [Pg.274]    [Pg.75]    [Pg.331]    [Pg.71]    [Pg.32]    [Pg.357]    [Pg.358]    [Pg.365]    [Pg.16]    [Pg.100]    [Pg.306]    [Pg.893]    [Pg.234]    [Pg.501]    [Pg.662]    [Pg.79]    [Pg.453]    [Pg.180]    [Pg.210]    [Pg.642]    [Pg.255]    [Pg.16]   
See also in sourсe #XX -- [ Pg.457 ]




SEARCH



Copper alloys galvanic corrosion

Copper galvanic corrosion with

© 2024 chempedia.info