Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radiation copolymerization

Usually, free-radical initiators such as azo compounds or peroxides are used to initiate the polymerization of acrylic monomers. Photochemical and radiation-initiated polymerizations are also well known. Methods of radical polymerization include bulk, solution, emulsion, suspension, graft copolymerization, radiation-induced, and ionic with emulsion being the most important. [Pg.18]

FIGURE 8.9 A schematic representation of graft copolymerization (radiation-induced or plasma-induced) on an electrospun nanofiber surface. (Adapted from Yoo, H.S., et al., Adv. Drug Deliv. Rev., 61, 1033, 2009.)... [Pg.235]

Copolymerization is effected by suspension or emulsion techniques under such conditions that tetrafluoroethylene, but not ethylene, may homopolymerize. Bulk polymerization is not commercially feasible, because of heat-transfer limitations and explosion hazard of the comonomer mixture. Polymerizations typically take place below 100°C and 5 MPa (50 atm). Initiators include peroxides, redox systems (10), free-radical sources (11), and ionizing radiation (12). [Pg.365]

Another use is of minor proportions of polyfunctional aHyl esters, eg, diaHyl maleate, ttiaHyl cyanurate, and ttiaHyl isocyanurate, for cross-linking or curing preformed vinyl-type polymers such as polyethylene and vinyl chlotide copolymers. These reactions ate examples of graft copolymerization in which specific added peroxides or high energy radiation achieve optimum cross-linking (see Copolymers). [Pg.80]

Anionic polyacrylamide was prepared by gamma radiation-initiated copolymerization of acrylamid with sodium acrylate in aqueous solution at optimum conditions for the copolymerization [17]. The copolymerization process produces water-soluble poly (acrylamide-sodium acrylate [pAM-AANa] of high molecular weight [17,54]. [Pg.120]

Poly(acrylamide-diallylethylamine-HCl) (cationic polyacrylamide pAM-HCl) was prepared by gamma radiation-initiated copolymerization of acrylamide with di-allylethylamine-HCI in aqueous solution at the optimum composition for copolymerization of acrylamide with diallylamine derivatives [61]. [Pg.120]

The reported values for the exponent of the dose-rate for the polymerization rate in gamma radiation-induced copolymerization of acrylamide with methyl chloride salt of A, A -dimethylaminoethyl methacrylate (DMAEM-MC) in aqueous solution was found to be 0.8 [16]. However, the dose-rate exponent of the polymerization rate at a lower dose-rate was found to be slightly higher than 0.5 for gamma radiation-induced polymerization of acrylamide in aqueous solution [45,62]. [Pg.124]

Figure 8 Effect of radiation dose on copolymerization of acrylamide with DAEA-HCl. O = q(%) = [tj]. Figure 8 Effect of radiation dose on copolymerization of acrylamide with DAEA-HCl. O = q(%) = [tj].
From the logarithmic plot of the Arrhenius equation shown in Figs. 8 and 9, the overall activation energy, / p, was calculated to be 0.65 and 0.56 Kcal/mol for AM-AANa and AM-DAEA-HCl systems, respectively. However, the corresponding reported values for gamma radiation induced copolymerization of acrylamide with DMAEM-MC in aqueous solution was found to be 2.0 Kcal/mol [16]. [Pg.127]

T. Siyam, Studies on Gamma Radiation Induced Copolymerization of Acrylamide Sodium Acrylate as Floccu-lant, M. Sc. Thesis, Fac. Sci., Cairo Univ. (1982). [Pg.134]

During mutual graft copolymerization, homopolymerization always occurs. This is one of the most important problems associated with this technique. When this technique is applied to radiation-sensitive monomers such as acrylic acid, methacrylic acid, polyfunctional acrylates, and their esters, homopolymer is formed more rapidly than the graft. With the low-molecular weight acrylate esters, particularly ethyl acrylate, the homopolymer problem is evidenced not so much by high yields as by erratic and irreproducible grafting. [Pg.510]

The correct choice of solvents is essential to the success of radiation-induced graft copolymerization. Their influence on radiation grafting has been the subject of many studies. It has been established that solvents play an important role in grafting because of the significance of polymer swelling. The grafting patterns to PP are solvent-dependent, thus, it is essential to examine the role of solvents. It was found that grafting in the alcohol is better than when other polar solvents such as dimethyl-... [Pg.510]

An effective method of NVF chemical modification is graft copolymerization [34,35]. This reaction is initiated by free radicals of the cellulose molecule. The cellulose is treated with an aqueous solution with selected ions and is exposed to a high-energy radiation. Then, the cellulose molecule cracks and radicals are formed. Afterwards, the radical sites of the cellulose are treated with a suitable solution (compatible with the polymer matrix), for example vinyl monomer [35] acrylonitrile [34], methyl methacrylate [47], polystyrene [41]. The resulting copolymer possesses properties characteristic of both fibrous cellulose and grafted polymer. [Pg.796]

Fluoropolymers utilizing high molecular weights and copolymerized and alloyed with polyethylene, should be used in most radiation applications. High-dose-rate E-beam processing may reduce oxidative degradation. When irradiated, PTFE and PFA are... [Pg.405]

Copolymers of carbon monoxide, carbon dioxide, sulfur dioxide or carbon disulfide are frequently formed in combination with oxiranes, thiiranes or aziridines. Copolymerization of carbon monoxide and ethylenimine was carried out under radiation and the formation of 3-nylon was observed238. ... [Pg.19]

Radiation-induced modification or processing of a polymer is a relatively sophisticated method than conventional thermal and chemical processes. The radiation-induced changes in polymer materials such as plastics or elastomers provide some desirable combinations of physical and chemical properties in the end product. Radiation can be applied to various industrial processes involving polymerization, cross-linking, graft copolymerization, curing of paints and coatings, etc. [Pg.861]

A number of methods have been used to prepare graft copolymers in the past few decades including both conventional chemical and radiation-chemical methods [20,86,87]. In the latter case, graft copolymerization is usually initiated by creating active radical sites on existing polymer chains. The advantages of radiation-chemical methods are (i) ease of preparation as compared to... [Pg.867]

The methods of achieving graft copolymerization using radiation include ... [Pg.868]

The technique of graft copolymerization is used for the production of radiation-modified fabrics and fibers. The process consists of saturating the fabrics with vinyl monomers and then irradiating it in moist state with accelerated electrons. The fabrics thus produced have improved properties such as resistance to wrinkling and shrinkage, resistance to fire, color-fastness, good launderability, and dissipation of static charge. [Pg.870]

The modihcation of polymer surfaces by graft copolymerization of a monomer or monomers from active sites has been reported in numerous references [165-169]. The most common techniques are y- and EB radiations, which generate surface radicals. Monomers can be present in gas phase (sublimed solid), in solution or as neat liquid. [Pg.871]


See other pages where Radiation copolymerization is mentioned: [Pg.235]    [Pg.553]    [Pg.191]    [Pg.157]    [Pg.235]    [Pg.553]    [Pg.191]    [Pg.157]    [Pg.23]    [Pg.453]    [Pg.427]    [Pg.429]    [Pg.459]    [Pg.463]    [Pg.526]    [Pg.1108]    [Pg.1110]    [Pg.125]    [Pg.489]    [Pg.491]    [Pg.494]    [Pg.502]    [Pg.507]    [Pg.508]    [Pg.508]    [Pg.533]    [Pg.916]    [Pg.860]    [Pg.865]    [Pg.869]    [Pg.870]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



© 2024 chempedia.info