Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymerisation with Olefins

Styrene, which can be treated formally as an a-olefin branched in the 3-position, forms copolymers with ethylene and a-olefins (as well as with /i-olefins, involving isomerisation copolymerisation). Both heterogeneous Ziegler-Natta catalysts and a single-site metallocene catalyst promote the copolymerisation. [Pg.263]


Two further pieces of well-known evidence need to be put into perspective, so that their bearing on the mechanistic problem may become clearer. One of these is the fact that under cationic polymerisation conditions cyclic ethers do not copolymerise with olefins, but that at best a mixture of homopolymers may be obtained. On the other hand,... [Pg.766]

Polar monomers in which a heteroatom is conjugated with the olefinic double bond [CH2=CH-C(Z)=X, CH2=CH-C=X] undergo radical copolymerisation with olefins when initiated with Ziegler-Natta catalysts [544,545], One of the possible reaction schemes of the formation of initiating radicals in the system acrylonitrile/VOCL AlEtCl2 is as follows [546] ... [Pg.207]

Many monomers have been copolymerised with ethylene using a variety of polymerisation systems, in some cases leading to commercial products. Copolymerisation of ethylene with other olefins leads to hydrocarbon polymers with reduced regularity and hence lower density, inferior mechanical properties, lower softening point and lower brittle point. [Pg.275]

Ethylene has also been copolymerised with a number of non-olefinic monomers and of the copolymers produced those with vinyl acetate have so far proved the most significant commercially . The presence of vinyl acetate residues in the chain reduces the polymer regularity and hence by the vinyl acetate content the amount of crystallinity may be controlled. Copolymers based on 45% vinyl acetate are rubbery and may be vulcanised with peroxides. They are commercially available (Levapren). Copolymers with about 30% vinyl acetate residues (Elvax-Du Pont) are flexible resins soluble in toluene and benezene at room temperature and with a tensile strength of about lOOOlbf/in (6.9 MPa) and a density of about 0.95 g/cm. Their main uses are as wax additives and as adhesive ingredients. [Pg.276]

Ever since their original discoveries, Ziegler Natta catalysts and Phillips catalysts have been used for both the homopolymerisation and the copolymerisation of olefins. Moreover, Ziegler-Natta catalysts also allowed the copolymerisation of olefins with vinylaromatic monomers, conjugated dienes and cycloolefins. Other coordination catalysts such as group 8 metal compounds, especially cationic Pd(II) complexes, enabled the alternating copolymerisation of olefins and carbon monoxide [2,29,30,37,43,46,241,448 450],... [Pg.179]

The different reactivities of the olefins are important for the copolymerisation. The comonomer reactivity ratio, rj, in copolymerisation with ethylene appears to decrease with increasing steric hindrance around the double bond in the a-olefin in to the following order [250] ethylene > propylene > 1-butene > linear a-olefin > branched a-olefin. [Pg.182]

The ability of a /i-olefin to copolymerise with ethylene in the presence of Ziegler-Natta catalysts arises from minimisation of steric interactions at the catalytic active site by ethylene units the steric hindrance, which prevents homopropagation of the /1-olefin, is overcome when the /<-olefin monomer is... [Pg.184]

Functionalised a-olefins capable of undergoing insertion polymerisation with Ziegler-Natta catalysts are, in principle, monomers in which the heteroatom (X) does not electronically interact with the double bond to be polymerised in such monomers, the heteroatom is separated from the double bond CH2=CH-(CH2)x X [326,384,518,522-528], Monomers with the heteroatom directly bound to the double bond, i.e. those of the CH2=CH-X type, may also undergo polymerization, but when the heteroatom is silicon or tin (X= Si, Sn) [522-526], Representative examples of the insertion polymerisation of functionalised a-olefins and their copolymerisation with ethylene and a-olefins in the presence of heterogeneous Ziegler-Natta catalysts are shown in Table 3.7 [2,241,326,384,518,522-528],... [Pg.202]

How can one explain the occurrence of steric defects in tactic poly(ot-olefin)s Explain why high-resolution nuclear magnetic resonance is the most convenient method for determining the chain micro structure in poly(a-olefin)s. Consider how 3H and 13C NMR spectroscopy can provide stereochemical information concerning a-olefin polymer chains on the diad level (m, r) and the triad level (mm, rr, mr). Explain why /1-olefins, which do not homopolymerise (without isomerisation) in the presence of Ziegler-Natta catalysts, undergo copolymerisation with ethylene in the presence of these catalysts. [Pg.244]

Give reasons why ethylene and a-olefins undergo copolymerisation with carbon monoxide in the presence of coordination catalysts. [Pg.244]

Similarly, the same catalysts that promote the syndiospecific polymerisation of styrene also polymerise ethylene and a-olefins [106,107], ring-substituted styrenes [6] and conjugated dienes [44,74,108-110], These monomers can also be copolymerised with each other [111-114], Substituted styrenes, which yield syndiotactic polymers by polymerisation run with syndiospecific catalysts, form copolymers with styrene the polymerisation rate increases with increasing nucleophilicity of the comonomer. The random copolymers formed are co-syndiotactic [6,111,112]. [Pg.263]

Styrene undergoes copolymerisation with ethylene and various a-olefins in the presence of heterogeneous Ziegler-Natta catalysts. Its reactivity in the copolymerisation is quite low, which is illustrated by the values of the relative reactivity ratios, r and r2, presented in Table 4.5 [118]. One may note, however, a considerably high relative reactivity of styrene in copolymerisation with vinyl-cyclohexane. The copolymerisation of styrene with small amounts of a-olefin, such as 1-octene or 1-decene, yields copolymers of reduced crystallinity and thus reduced brittleness compared with the homopolymer of styrene. [Pg.264]

Styrene/a-olefin copolymers containing a predominant amount of styrene units can be easily formed through the monomer isomerisation-copolymerisation of styrene and /i-olefin such as m-2-butene in the presence of heterogeneous Ziegler-Natta catalysts such as TiCl3—AlEt3. Styrene appeared to be a favourable comonomer for monomer isomerisation-copolymerisation with internal olefins, since only the isomerisation of /i-olefin to a-olefin, and not the isomerisation of styrene (in contrast to the olefin), occurs in the presence of Ziegler Natta catalysts [119] ... [Pg.264]

A scheme for the alternating copolymerisation of conjugated dienes and a-olefins has been proposed in the case of isoprene/propylene copolymerisation with V-based Ziegler-Natta catalysts [209] ... [Pg.315]

Copolymerisation of Olefins with Polar Monomers and with CO... [Pg.248]

Ethylene may be copolymerised with vinyl acetate to make ethyl-vinyl acetate, offering high seal integrity and clarity for frozen food applications where a high degree of toughness is required. Ethylene copolymers with other olefins such as propylene, 1-hexene and 1-octene allow a range of properties to be achieved. Linear low density polyethylene (LLDPE) has a... [Pg.237]

Non-crosslinked polystyrene with salen ligand Non-crosslinked polystyrene with onium salt residues Non-crosslinked polystyrene copolymerised with a chiral phosphine ligand 14,765 0.5-3.8" 0.7-2.3 CH2Cl2,THF, EtOAc, DMF DMF,DMSO,DMA, toluene, anisole, MeOH,MeCN, diglyme Asymmetric epoxidation Regioselective addition reaction of phenyl glycidyl ether with S-phenyl thioacetate Pt-catalysed asymmetric hydroformylation of olefins Precipitation (methanol) (r) Precipitation (diethyl ether) (r) [68] [142] [143]... [Pg.22]

When ethylene (ethene) is copolymerised with small proportions of higher alkenes (olefins), the resulting short-chain branches modify the polymer crystallinity (Section 3.4.1). Long-chain branched molecules (Fig. 2.8) can occur as a result of a side reaction for example when a propagating polyethylene molecule abstracts a H atom from a dead polyethylene molecule... [Pg.38]

Characteristic examples of industrial fast chemical reactions are the electrophilic polymerisation of isobutylene [7], its copolymerisation with isoprene [10], chlorination of olefins [17] and butyl rubber [18], ethylene hydrochlorination [17], sulfation of olefins [19], neutralisation of acidic and basic media [20], isobutene alkylation (production of benzines) [21-23], and so on. These examples of fast liquid-phase reactions and a variety of such processes assume a formal approach for their calculation and modelling, based on material and heat balance in the industrial implementation of respective products. It is a priori acknowledged that is not difficult to achieve an isothermic mode for fast chemical exothermic processes if you are aware of the process behaviour and can control it. [Pg.329]

Functionalised PO as block and graft copolymers used as compatibilisers or to increase interactions with other materials are prepared by free radical grafting (the simplest method), metallocene-catalysed copolymerisation of olefins with functional monomers, or anionic polymerisation (silane-containing PO). They are also produced by controlled/living polymerisation techniques such as nitroxide-mediated controlled radical polymerisation, atom transfer radical polymerisation (ATRP), and reversible addition-fragmentation chain transfer (RAFT). [Pg.27]

Dow catalysts have a high capabihty to copolymetize linear a-olefias with ethylene. As a result, when these catalysts are used in solution-type polymerisation reactions, they also copolymerise ethylene with polymer molecules containing vinyl double bonds at their ends. This autocopolymerisation reaction is able to produce LLDPE molecules with long-chain branches that exhibit some beneficial processing properties (1,2,38,39). Distinct from other catalyst systems, Dow catalysts can also copolymerise ethylene with styrene and hindered olefins (40). [Pg.399]

Chromium Oxide-Based Catalysts. Chromium oxide-based catalysts were originally developed by Phillips Petroleum Company for the manufacture of HDPE resins subsequendy, they have been modified for ethylene—a-olefin copolymerisation reactions (10). These catalysts use a mixed sihca—titania support containing from 2 to 20 wt % of Ti. After the deposition of chromium species onto the support, the catalyst is first oxidised by an oxygen—air mixture and then reduced at increased temperatures with carbon monoxide. The catalyst systems used for ethylene copolymerisation consist of sohd catalysts and co-catalysts, ie, triaLkylboron or trialkyl aluminum compounds. Ethylene—a-olefin copolymers produced with these catalysts have very broad molecular weight distributions, characterised by M.Jin the 12—35 and MER in the 80—200 range. [Pg.399]

AH higher a-olefins, in the presence of Ziegler-Natta catalysts, can easily copolymerise both with other a-olefins and with ethylene (51,59). In these reactions, higher a-olefins are all less reactive than ethylene and propylene (41). Their reactivities in the copolymerisation reactions depend on the sise and the branching degree of their alkyl groups (51) (see Olefin polya rs, linear low density polyethylene). [Pg.430]

Another important use of BCl is as a Ftiedel-Crafts catalyst ia various polymerisation, alkylation, and acylation reactions, and ia other organic syntheses (see Friedel-Crafts reaction). Examples include conversion of cyclophosphasenes to polymers (81,82) polymerisation of olefins such as ethylene (75,83—88) graft polymerisation of vinyl chloride and isobutylene (89) stereospecific polymerisation of propylene (90) copolymerisation of isobutylene and styrene (91,92), and other unsaturated aromatics with maleic anhydride (93) polymerisation of norhornene (94), butadiene (95) preparation of electrically conducting epoxy resins (96), and polymers containing B and N (97) and selective demethylation of methoxy groups ortho to OH groups (98). [Pg.224]

Experiments were earned out to investigate the transparency of various materials produced by copolymerising 4MP1 with other olefins such as but-1-ene, hex-l-ene and oct-l-ene. [Pg.271]

Abstract Over the past decade significant advances have been made in the fields of polymerisation, oligomerisation and telomerisation with metal-NHC catalysts. Complexes from across the transition series, as well as lanthanide examples, have been employed as catalysts for these reactions. Recent developments in the use of metal-NHC complexes in a-olefin polymerisation and oligomerisation, CO/olefm copolymerisation, atom-transfer radical polymerisation (ATRP) and diene telomerisation are discnssed in subsequent sections. [Pg.105]


See other pages where Copolymerisation with Olefins is mentioned: [Pg.188]    [Pg.200]    [Pg.263]    [Pg.188]    [Pg.200]    [Pg.263]    [Pg.182]    [Pg.191]    [Pg.199]    [Pg.201]    [Pg.206]    [Pg.207]    [Pg.263]    [Pg.22]    [Pg.138]    [Pg.179]    [Pg.199]    [Pg.290]    [Pg.218]    [Pg.106]   


SEARCH



Copolymerisation

With Olefins

© 2024 chempedia.info