Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Common Conversion Factors

This section presents sample calculations to aid the reader in understanding the calculations behind the development of a fuel cell power system. The sample calculations are arranged topically with unit operations in Section 10.1, system issues in Section 10.2, supporting calculations in Section 10.3, and cost calculations in Section 10.4. A list of conversion factors common to fuel cell systems analysis is presented in Section 10.5 ans a sample automotive design calculation is presented in Section 10.6. [Pg.284]

The following is a tabulation of conversion factors common to fuel cell analysis. [Pg.320]

The following appendices provide references to standards, fire resistance nomenclature, electrical ratings, hydraulic data, and conversion factors commonly referred to while examining and designing fire and explosion protection systems for the process industry. [Pg.412]

To convert the core area into the pore area ( = specific surface, if the external area is negligible) necessitates the use of a conversion factor R which is a function not only of the pore model but also of both r and t (cf. p. 148). Thus, successive increments of the area under the curve have to be corrected, each with its appropriate value of R. For the commonly used cylindrical model,... [Pg.171]

The dimensions of permeabiUty become clear after rearranging equation 1 to solve for P. The permeabiUty must have dimensions of quantity of permeant (either mass or molar) times thickness ia the numerator with area times a time iaterval times pressure ia the denomiaator. Table 1 contains conversion factors for several common unit sets with the permeant quantity ia molar units. The unit nmol/(m-s-GPa) is used hereia for the permeabiUty of small molecules because this unit is SI, which is preferred ia current technical encyclopedias, and it is only a factor of 2, different from the commercial permeabihty unit, (cc(STP)-mil)/(100 in. datm). The molar character is useful for oxygen permeation, which could ultimately involve a chemical reaction, or carbon dioxide permeation, which is often related to the pressure in a beverage botde. [Pg.487]

The water-vapor transmission rate (WVTR) is another descriptor of barrier polymers. Strictly, it is not a permeabihty coefficient. The dimensions are quantity times thickness in the numerator and area times a time interval in the denominator. These dimensions do not have a pressure dimension in the denominator as does the permeabihty. Common commercial units for WVTR are (gmil)/(100 in. d). Table 2 contains conversion factors for several common units for WVTR. This text uses the preferred nmol/(m-s). The WVTR describes the rate that water molecules move through a film when one side has a humid environment and the other side is dry. The WVTR is a strong function of temperature because both the water content of the air and the permeabihty are direcdy related to temperature. Eor the WVTR to be useful, the water-vapor pressure difference for the value must be reported. Both these facts are recognized by specifying the relative humidity and temperature for the WVTR value. This enables the user to calculate the water-vapor pressure difference. Eor example, the common conditions are 90% relative humidity (rh) at 37.8°C, which means the pressure difference is 5.89 kPa (44 mm Hg). [Pg.487]

TABLE 1 4 Conversion Factors U S Customary and Commonly Used Units to SI Units (Continued)... [Pg.25]

Quantity Customary or commonly used unit SI unit Alternate SI unit Conversion factor multiply customary unit by factor to obtain SI unit ... [Pg.25]

Units employed in diffusivity correlations commonly followed the cgs system. Similarly, correlations for mass transfer correlations used the cgs or Enghsh system. In both cases, only the most recent correlations employ SI units. Since most correlations involve other properties and physical parameters, often with mixed units, they are repeated here as originally stated. Common conversion factors are listed in Table 1-4. [Pg.588]

To determine emission data, as well as the effect that fuel changes would produce, it is necessary to use the appropriate thermal conversion factor from one fuel to another. Table 6-5 lists these factors for fuels in common use. [Pg.95]

Table III lists the kinetic equations for the reactions studied by Scholten and Konvalinka when the hydride was the catalyst involved. Uncracked samples of the hydride exhibit far greater activation energy than does the a-phase, i.e. 12.5 kcal/mole, in good accord with 11 kcal/mole obtained by Couper and Eley for a wire preexposed to the atomic hydrogen. The exponent of the power at p amounts to 0.64 no matter which one of the reactions was studied and under what conditions of p and T the kinetic experiments were carried out. According to Scholten and Konvalinka this is a unique quantitative factor common to the reactions studied on palladium hydride as catalyst. It constitutes a point of departure for the authors proposal for the mechanism of the para-hydrogen conversion reaction catalyzed by the hydride phase. Table III lists the kinetic equations for the reactions studied by Scholten and Konvalinka when the hydride was the catalyst involved. Uncracked samples of the hydride exhibit far greater activation energy than does the a-phase, i.e. 12.5 kcal/mole, in good accord with 11 kcal/mole obtained by Couper and Eley for a wire preexposed to the atomic hydrogen. The exponent of the power at p amounts to 0.64 no matter which one of the reactions was studied and under what conditions of p and T the kinetic experiments were carried out. According to Scholten and Konvalinka this is a unique quantitative factor common to the reactions studied on palladium hydride as catalyst. It constitutes a point of departure for the authors proposal for the mechanism of the para-hydrogen conversion reaction catalyzed by the hydride phase.
Energy and work are interchangeable, and various terms and conversion factors are in common usage throughout the world today. These conversion factors are equivalencies unrelated to operational efficiencies because practical energy and work conversions are never 100% efficient. [Pg.10]

Designers, manufacturers, and operators of boilers continue to use many of these terms, without undue deference to unit standardization, to define, measure, and report on plant steam-raising capacities power output) and operating parameters. (In continuance of this common practice therefore, many of these various terms are freely used in discussions throughout this book.) However, to familiarize the reader and minimize confusion, some energy terms and notes are provided here. A more complete list of units and conversion factors is provided in the appendix. [Pg.11]

Table 1.2. Conversion factors for some common SI units14 (An asterisk denotes an exact relationship.)... Table 1.2. Conversion factors for some common SI units14 (An asterisk denotes an exact relationship.)...
Relations between common units can be found in Table 5 of Appendix IB. We use these relations to construct a conversion factor of the form... [Pg.31]

The combination of constants RTIF often appears in electrochemical equations it has the dimensions of voltage. At 25°C (298.15 K) it has a value of 0.02569 V (or roughly 25 mV). When including the conversion factor for changing natural to common logarithms, we find a value of 0.05916 V (about 59 or 60mV) for 2.303 (RTIF) at 25°C. Values for other temperatures can be found by simple conversion, since this parameter is proportional to the absolute temperature. [Pg.43]

For a comparison of experimental Mossbauer isomer shifts, the values have to be referenced to a common standard. According to (4.23), the results of a measurement depend on the type of source material, for example, Co diffused into rhodium, palladium, platinum, or other metals. For Fe Mossbauer spectroscopy, the spectrometer is usually calibrated by using the known absorption spectrum of metallic iron (a-phase). Therefore, Fe isomer shifts are commonly reported relative to the centroid of the magnetically split spectrum of a-iron (Sect. 3.1.3). Conversion factors for sodium nitroprusside dihydrate, Na2[Fe(CN)5N0]-2H20, or sodium ferrocyanide, Na4[Fe(CN)]6, which have also been used as reference materials, are found in Table 3.1. Reference materials for other isotopes are given in Table 1.3 of [18] in Chap. 1. [Pg.81]

Appendices useful to students and practitioners. These appendices include 1) conversion factors and anthropometries 2) common laboratory tests and their reference ranges and 3) common medical abbreviations. [Pg.1715]

Analytical methods for quantifying americium in environmental samples are summarized in Table 7-2. The methods that are commonly used in the analysis of americium based on activity are gross a analysis, a-spectrometry and gamma-ray spectrometry. MS detection techniques are used to measure the mass of americium in environmental samples. (The mass-activity conversion factor for 241Am is 0.29 (lCi/ lg or 3.43 ig/ p,Ci [Harvey etal. 1993]). [Pg.207]

The use of non-SI units is strongly discouraged. For these units there often do not exist standards, and for historical reasons the same denomination may mean sundry units. For example, it is common practice in theoretical chemistry to state energy values in kilocalories. However, to convert a calorie to the SI unit Joule, there exist different conversion factors ... [Pg.248]

Conversion factors relate the magnitudes of different units with common dimensions and are actually identities that is, 1 ft is identical to 12 in., 1 Btu is identical to 778 ftlbf, etc. Because any identity can be expressed as a ratio with a magnitude but no dimensions, the same holds for any conversion factor, i.e.,... [Pg.19]

A table of commonly encountered conversion factors is included at the front of the book. The value of any quantity expressed in a given set of units can be converted to any other equivalent set of units by multiplying or dividing by the appropriate conversion factor to cancel the unwanted units. [Pg.19]

Thus, after canceling common units, the conversion factor relating slugs to lbm is 32.174 lbm/slug. [Pg.19]

This equation defines the permeability (K) and is known as Darcy s law. The most common unit for the permeability is the darcy, which is defined as the flow rate in cm3/s that results when a pressure drop of 1 atm is applied to a porous medium that is 1 cm2 in cross-sectional area and 1 cm long, for a fluid with viscosity of 1 cP. It should be evident that the dimensions of the darcy are L2, and the conversion factors are (approximately) 10 x cm2/darcy C5 10-11 ft2/darcy. The flow properties of tight, crude oil bearing, rock formations are often described in permeability units of millidarcies. [Pg.396]

Tables C. 1-C.4 provide conversion factors from a.u. to SI units and a variety of practical (thermochemical, crystallographic, spectroscopic) non-SI units in common usage. Numerical values are quoted to six-digit precision (though many are known to higher accuracy) in an abbreviated exponential notation, whereby 6.022 14(23) means 6.022 14 x 1023. In this book we follow a current tendency of the quantum chemical literature by expressing relative energies in thermochemical units (kcal mol-1), structural parameters in crystallographic Angstrom units (A), vibrational frequencies in common spectroscopic units (cm-1), and so forth. These choices, although inconsistent according to SI orthodoxy, seem better able to serve effective communication between theoreticians and experimentalists. Tables C. 1-C.4 provide conversion factors from a.u. to SI units and a variety of practical (thermochemical, crystallographic, spectroscopic) non-SI units in common usage. Numerical values are quoted to six-digit precision (though many are known to higher accuracy) in an abbreviated exponential notation, whereby 6.022 14(23) means 6.022 14 x 1023. In this book we follow a current tendency of the quantum chemical literature by expressing relative energies in thermochemical units (kcal mol-1), structural parameters in crystallographic Angstrom units (A), vibrational frequencies in common spectroscopic units (cm-1), and so forth. These choices, although inconsistent according to SI orthodoxy, seem better able to serve effective communication between theoreticians and experimentalists.

See other pages where Common Conversion Factors is mentioned: [Pg.158]    [Pg.21]    [Pg.21]    [Pg.38]    [Pg.459]    [Pg.413]    [Pg.221]    [Pg.489]    [Pg.958]    [Pg.17]    [Pg.414]    [Pg.204]    [Pg.480]    [Pg.49]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 ]




SEARCH



Common factoring

Common factors

Conversion Factors

Conversion Factors for Some Common SI Units

Conversion factors U.S. customary and commonly used units

Conversions conversion factors

© 2024 chempedia.info