Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conversion batch reactor

Although low conversion reactors can be used for PS and HIPS, high conversion batch reactors are generally limited to PS because of difficulties with HIPS. In particular, the HIPS cake from a polypress is difficult to grind and, because of poor temperature control, is inferior in toughness. [Pg.73]

For batch reactors, account has to be taken of the time required to achieve a given conversion. Batch cycle time is addressed later. [Pg.26]

Eigure 2 shows that even materials which are rather resistant to oxidation ( 2/ 1 0.1) are consumed to a noticeable degree at high conversions. Also the use of plug-flow or batch reactors can offer a measurable improvement in efficiencies in comparison with back-mixed reactors. Intermediates that cooxidize about as readily as the feed hydrocarbon (eg, ketones with similar stmcture) can be produced in perhaps reasonable efficiencies but, except at very low conversions, are subject to considerable loss through oxidation. They may be suitable coproducts if they are also precursors to more oxidation-resistant desirable materials. Intermediates which oxidize relatively rapidly (/ 2 / i — 3-50 eg, alcohols and aldehydes) are difficult to produce in appreciable amounts, even in batch or plug-flow reactors. Indeed, for = 50, to isolate 90% or more of the intermediate made, the conversion must... [Pg.337]

Eig. 3. Plot of maximum yield as a % of maximum (zero conversion) efficiency to a primary intermediate x axis is ratio of oxidation rate constants ( 2 / i) for primary intermediate vs feed ( ) plug-flow or batch reactor (B) back-mixed reactor (A) plug-flow advantage, %. [Pg.337]

The typical SEA process uses a manganese catalyst with a potassium promoter (for solubilization) in a batch reactor. A manganese catalyst increases the relative rate of attack on carbonyl intermediates. Low conversions are followed by recovery and recycle of complex intermediate streams. Acid recovery and purification involve extraction with caustic and heat treatment to further decrease small amounts of impurities (particularly carbonyls). The fatty acids are recovered by freeing with sulfuric acid and, hence, sodium sulfate is a by-product. [Pg.344]

In TBP extraction, the yeUowcake is dissolved ia nitric acid and extracted with tributyl phosphate ia a kerosene or hexane diluent. The uranyl ion forms the mixed complex U02(N02)2(TBP)2 which is extracted iato the diluent. The purified uranium is then back-extracted iato nitric acid or water, and concentrated. The uranyl nitrate solution is evaporated to uranyl nitrate hexahydrate [13520-83-7], U02(N02)2 6H20. The uranyl nitrate hexahydrate is dehydrated and denitrated duting a pyrolysis step to form uranium trioxide [1344-58-7], UO, as shown ia equation 10. The pyrolysis is most often carried out ia either a batch reactor (Fig. 2) or a fluidized-bed denitrator (Fig. 3). The UO is reduced with hydrogen to uranium dioxide [1344-57-6], UO2 (eq. 11), and converted to uranium tetrafluoride [10049-14-6], UF, with HF at elevated temperatures (eq. 12). The UF can be either reduced to uranium metal or fluotinated to uranium hexafluoride [7783-81-5], UF, for isotope enrichment. The chemistry and operating conditions of the TBP refining process, and conversion to UO, UO2, and ultimately UF have been discussed ia detail (40). [Pg.318]

The well-known difficulty with batch reactors is the uncertainty of the initial reaction conditions. The problem is to bring together reactants, catalyst and operating conditions of temperature and pressure so that at zero time everything is as desired. The initial reaction rate is usually the fastest and most error-laden. To overcome this, the traditional method was to calculate the rate for decreasingly smaller conversions and extrapolate it back to zero conversion. The significance of estimating initial rate was that without any products present, rate could be expressed as the function of reactants and temperature only. This then simplified the mathematical analysis of the rate fianction. [Pg.29]

The differential reactor is the second from the left. To the right, various ways are shown to prepare feed for the differential reactor. These feeding methods finally lead to the recycle reactor concept. A basic misunderstanding about the differential reactor is widespread. This is the belief that a differential reactor is a short reactor fed with various large quantities of feed to generate various small conversions. In reality, such a system is a short integral reactor used to extrapolate to initial rates. This method is similar to that used in batch reactor experiments to estimate... [Pg.53]

The decomposition of nitrous oxide (NjO) to nitrogen and oxygen is preformed in a 5.0 1 batch reactor at a constant temperature of 1,015 K, beginning with pure NjO at several initial pressures. The reactor pressure P(t) is monitored, and the times (tj/2) required to achieve 50% conversion of N2O are noted in Table 3-19. Use these results to verify that the N2O decomposition reaction is second order and determine the value of k at T = 1,015 K. [Pg.208]

Following are examples for finding die time of an isodiermal batch reactor for a given conversion of die reactant and odier pertinent variables, and for gas phase reaction. [Pg.269]

Consider an isodiermal batch reactor for a given conversion of die reactant... [Pg.269]

Since the volume depends on conversion or time in a constant pressure batch reactor, consider the mole balance in relation to the fractional conversion X. From the stoichiometry. [Pg.276]

Figure 6-6. Temperature versus fractional conversion profiles for various rates of heat input in a batch reactor. Figure 6-6. Temperature versus fractional conversion profiles for various rates of heat input in a batch reactor.
Batch Mass Reactors. The batch-mass reactors used in these processes are of two types low conversion agitated kettles and high conversion static reactors with extended cooling surfaces. [Pg.73]

Process flow for a typical batch-mass polystyrene process(1) is shown in Figure 1. Styrene monomer is charged to the low conversion prepolymerization reactor with catalyst and other additives, and the temperature is increased stepwise until the desired conversion is reached. It is then transferred into the press. Polycycles are 6 to 14 hours in the low conversion reactor, and 16 to 24 hours in the press. At completion, the cakes are then cooled with water and removed from the press to be ground and then (usually) extruded into pellets. [Pg.73]

Peaking and Non-isothermal Polymerizations. Biesenberger a (3) have studied the theory of "thermal ignition" applied to chain addition polymerization and worked out computational and experimental cases for batch styrene polymerization with various catalysts. They define thermal ignition as the condition where the reaction temperature increases rapidly with time and the rate of increase in temperature also increases with time (concave upward curve). Their theory, computations, and experiments were for well stirred batch reactors with constant heat transfer coefficients. Their work is of interest for understanding the boundaries of stability for abnormal situations like catalyst mischarge or control malfunctions. In practice, however, the criterion for stability in low conversion... [Pg.75]

High Conversion Batch Mass Reactors. Because of the very high viscosities at high conversion, these reactors are unagitated. Temperature control therefore depends upon conduction through the polymer to extended heat transfer surfaces. Most common are the cooled plates of the plate and frame... [Pg.84]

Two additional results were noted during this series of experiments. It was found that plugging of the reactor occurred when the conversion reached about 60%. No satisfactory explanation or cause for the plugging was determined. It was also noted that, regardless of the rate of polymerization, no further reaction occurred after a period of about 60 to 75 minutes. This is in contrast to reaction times of up to three hours for the same recipe used in a batch reactor. [Pg.114]

Batch reactors give the lowest possible fraction unreacted and the highest possible conversion for most reactions. Batch reactors also give the best yields and selectivities. These terms refer to the desired product. The molar yield is the number of moles of a specified product that are made per mole... [Pg.15]

There are two important types of ideal, continuous-flow reactors the piston flow reactor or PFR, and the continuous-flow stirred tank reactor or CSTR. They behave very diflerently with respect to conversion and selectivity. The piston flow reactor behaves exactly like a batch reactor. It is usually visualized as a long tube as illustrated in Figure 1.3. Suppose a small clump of material enters the reactor at time t = 0 and flows from the inlet to the outlet. We suppose that there is no mixing between this particular clump and other clumps that entered at different times. The clump stays together and ages and reacts as it flows down the tube. After it has been in the piston flow reactor for t seconds, the clump will have the same composition as if it had been in a batch reactor for t seconds. The composition of a batch reactor varies with time. The composition of a small clump flowing through a piston flow reactor varies with time in the same way. It also varies with position down the tube. The relationship between time and position is... [Pg.17]

Example 2.10 Suppose 2A —> B in the liquid phase and that the density changes from po to Poo = Po + Ap upon complete conversion. Find an analytical solution to the batch design equation and compare the results with a hypothetical batch reactor in which the density is constant. [Pg.60]

This paper presents the physical mechanism and the structure of a comprehensive dynamic Emulsion Polymerization Model (EPM). EPM combines the theory of coagulative nucleation of homogeneously nucleated precursors with detailed species material and energy balances to calculate the time evolution of the concentration, size, and colloidal characteristics of latex particles, the monomer conversions, the copolymer composition, and molecular weight in an emulsion system. The capabilities of EPM are demonstrated by comparisons of its predictions with experimental data from the literature covering styrene and styrene/methyl methacrylate polymerizations. EPM can successfully simulate continuous and batch reactors over a wide range of initiator and added surfactant concentrations. [Pg.360]

Data of Nomura and Funita (12). The predictive capabilities of EPM for copolymerizations are shown in Figures 8-9. Nomura has published a very extensive set of seeded experimental data for the system styrene-MMA. Figures 8 and 9 summarize the EPM calculations for two of these runs which were carried out in a batch reactor at 50 °C at an initiator concentration of 1.25 g dm 3 water. The concentration of the seeded particles was 6x10 dm 3 and the total mass of monomer was 200 g dm 3. The ratio of the mass of MMA to the total monomer was 0.5 and 0.1 in Figures 8 and 9 respectively. The agreement between the measured and predicted values of the total monomer conversion, the copolymer composition, and the concentration of the two monomers in the latex particles is excellent. The transition from Interval II to Interval III is predicted satisfactorily. In accordance with the experimental observations, EPM predicted no new particle formation under the conditions of this run. [Pg.376]

In this work, a comprehensive kinetic model, suitable for simulation of inilticomponent aiulsion polymerization reactors, is presented A well-mixed, isothermal, batch reactor is considered with illustrative purposes. Typical model outputs are PSD, monomer conversion, multivariate distritution of the i lymer particles in terms of numtoer and type of contained active Chains, and pwlymer ccmposition. Model predictions are compared with experimental data for the ternary system acrylonitrile-styrene-methyl methacrylate. [Pg.380]

Reactions in fine chemicals can be divided into three categories based on their tendency to accumulate heat in a batch or fed-batch reactor [54]. This is a useful basis for assessing suitability and requirements for conversion to a continuous reactor [45], Table 14.2, and formulate a short list of suitable reactors. Figure 14.3 [55]... [Pg.322]

Since isobutane is hydrogenolyzed faster than neopentane, selectivity at 0% conversion is difficult to measure in a batch reactor... [Pg.176]


See other pages where Conversion batch reactor is mentioned: [Pg.147]    [Pg.2822]    [Pg.147]    [Pg.2822]    [Pg.1099]    [Pg.344]    [Pg.437]    [Pg.505]    [Pg.508]    [Pg.515]    [Pg.89]    [Pg.697]    [Pg.29]    [Pg.561]    [Pg.767]    [Pg.1]    [Pg.32]    [Pg.495]    [Pg.496]    [Pg.322]    [Pg.338]    [Pg.395]    [Pg.652]    [Pg.812]    [Pg.297]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Batch reactor

Conversion batch

Reactor conversion

Reactors batch reactor

© 2024 chempedia.info