Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conjugated alkenes dienes

Although zirconium is only one out of over 50 potentially usable metals in this class (including the lanthanides and actinides), virtually all synthetic applications of hydrometallation with transition metals involve zirconium Why is this so The primary reason derives from the near requirement of a d -metal center for hydrometallation of a general alkene or alkyne. For later transition metals, hydrometallation to give a stable organometallic product can usually be achieved only for special cases—conjugated dienes, alkenes with electronegative substituents, etc. This is due to the relative stability of the ti -complex, as discussed previously. [Pg.695]

Diels-Alder reaction is the 1,4-addition of an alkene or alkyne (dienophile) across a conjugated diene. An example is the addition of pro-penal to buta-l,3-diene to give A -tetrahy-... [Pg.136]

Migration of a hydride ligand from Pd to a coordinated alkene (insertion of alkene) to form an alkyl ligand (alkylpalladium complex) (12) is a typical example of the a, /(-insertion of alkenes. In addition, many other un.saturated bonds such as in conjugated dienes, alkynes, CO2, and carbonyl groups, undergo the q, /(-insertion to Pd-X cr-bonds. The insertion of an internal alkyne to the Pd—C bond to form 13 can be understood as the c -carbopa-lladation of the alkyne. The insertion of butadiene into a Ph—Pd bond leads to the rr-allylpalladium complex 14. The insertion is usually highly stereospecific. [Pg.7]

The TT-allylpalladium complexes formed from conjugated dienes are reactive and react further with a nucleophile to give the 1,4-difunctionalized products 340. Based on this reaction, various nucleophiles are introduced into conjugated dienes to form 1,4-difunctionalized 2-alkenes. Acetoxy, alkoxy, halo, and... [Pg.66]

It is possible to prepare 1-acetoxy-4-chloro-2-alkenes from conjugated dienes with high selectivity. In the presence of stoichiometric amounts of LiOAc and LiCl, l-acetoxy-4-chloro-2-hutene (358) is obtained from butadiene[307], and cw-l-acetoxy-4-chloro-2-cyclohexene (360) is obtained from 1.3-cyclohexa-diene with 99% selectivity[308]. Neither the 1.4-dichloride nor 1.4-diacetate is formed. Good stereocontrol is also observed with acyclic diene.s[309]. The chloride and acetoxy groups have different reactivities. The Pd-catalyzed selective displacement of the chloride in 358 with diethylamine gives 359 without attacking allylic acetate, and the chloride in 360 is displaced with malonate with retention of the stereochemistry to give 361, while the uncatalyzed reaction affords the inversion product 362. [Pg.69]

The reaction of alkenyl mercurials with alkenes forms 7r-allylpalladium intermediates by the rearrangement of Pd via the elimination of H—Pd—Cl and its reverse readdition. Further transformations such as trapping with nucleophiles or elimination form conjugated dienes[379]. The 7r-allylpalladium intermediate 418 formed from 3-butenoic acid reacts intramolecularly with carboxylic acid to yield the 7-vinyl-7-laCtone 4I9[380], The /i,7-titisaturated amide 421 is obtained by the reaction of 4-vinyl-2-azetidinone (420) with an organomercur-ial. Similarly homoallylic alcohols are obtained from vinylic oxetanes[381]. [Pg.81]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

The intramolecular insertion of a conjugated diene into 7r-allylpalladium, initially formed in 789, generates another rr-allyl complex 790, which is trapped with acetate anion to give a new allylic acetate 791. No further reaction of the allylic acetate with alkene takes place[489]. [Pg.399]

Not all the properties of alkenes are revealed by focusing exclusively on the func tional group behavior of the double bond A double bond can affect the proper ties of a second functional unit to which it is directly attached It can be a sub stituent for example on a positively charged carbon in an allylic carbocation, or on a carbon that bears an unpaired electron in an allylic free radical, or it can be a substituent on a second double bond in a conjugated diene... [Pg.390]

Section 10 12 Conjugate addition of an alkene (the dienophile) to a conjugated diene gives a cyclohexene derivative in a process called the Diels-Alder reaction It is concerted and stereospecific substituents that are cis to each other on the dienophile remain cis m the product... [Pg.418]

Diels-Alder reaction (Section 10 12) Conjugate addition of an alkene to a conjugated diene to give a cyclohexene denva tive Diels-Alder reactions are extremely useful in synthesis... [Pg.1281]

This synthesis method can be utilised by any alkene or alkyne, but steric hindrance on internal double bonds can cause these reactions to be quite slow. Conjugated dienes and aromatic alkenes are not suited for the ultraviolet light-initiated process. The use of other free-radical initiators is required in free-radical-initiated reactions involving these species. [Pg.11]

Our discussion of chemical reactions of alkadienes will be limited to those of conjugated dienes. The reactions of isolated dienes are essentially the same as those of individual alkenes. The reactions of cumulated dienes are—like their preparation— so specialized that their treatment is better suited to an advanced course in organic chemistry. [Pg.405]

HCl adds to conjugated dienes in the same way that it adds to simple alkenes. However, dienes often yield a mixture of 1,2 and 1,4-addition products, e.g. [Pg.176]

The Diels-Alder reaction,is a cycloaddition reaction of a conjugated diene with a double or triple bond (the dienophile) it is one of the most important reactions in organic chemistry. For instance an electron-rich diene 1 reacts with an electron-poor dienophile 2 (e.g. an alkene bearing an electron-withdrawing substituent Z) to yield the unsaturated six-membered ring product 3. An illustrative example is the reaction of butadiene 1 with maleic anhydride 4 ... [Pg.89]

Conjugated dienes can be prepared by some of the methods previously discussed for preparing alkenes (Sections 11.7-11.10). The base-induced elimination of HX from an allylic halide is one such reaction. [Pg.483]

Because a monosubstituted alkene has a AT/Ohyc rog of approximately -126 kj/mol, we might expect that a compound with two monosubstituted double bonds would have a Af/0hyjrog approximately twice that value, or -252 kj/mol. Nonconjugated dienes, such as 1,4-pentadiene (AH°hydrog = —253 kj/mol), meet this expectation, but the conjugated diene 1,3-butadiene (AT/°hydr0g = -236 kj/mol) does not. 1,3-Butadiene is approximately 16 kj/mol (3.8 kcal/mol) more stable than expected. [Pg.484]

One of the most striking differences between conjugated dienes and typical alkenes is in their electrophilic addition reactions. To review briefly, the addition of an electrophile to a carbon-carbon double bond is a general reaction of alkenes (Section 6.7). Markovnikov regiochemistry is found because the more stable carbo-cation is formed as an intermediate. Thus, addition of HC1 to 2-methylpropene yields 2-chloro-2-methylpropane rather than l-chloro-2-methylpropane, and addition of 2 mol equiv of HC1 to the nonconjugated diene 1,4-pentadiene yields 2,4-dichloropentane. [Pg.487]

Perhaps the most striking difference between conjugated and nonconjugated dienes is that conjugated dienes undergo an addition reaction with alkenes to yield substituted cyclohexene products. For example, 1,3-butadiene and 3-buten-2-one give 3-cycIohexenyl methyl ketone. [Pg.492]

Conjugated dienes can be polymerized just as simple alkenes can (Section 7.10). Diene polymers are structurally more complex than simple alkene polymers, though, because double bonds remain every four carbon atoms along the chain, leading to the possibility of cis-trans isomers. The initiator (In) for the reaction can be either a radical, as occurs in ethylene polymerization, or an acid. Note that the polymerization is a 1,4-addition of the growing chain to a conjugated diene monomer. [Pg.498]

We can get a quantitative idea of benzene s stability by measuring heats of hydrogenation (Section 6.6). Cyclohexene, an isolated alkene, has ff ydrog = -118 kj/mol (-28.2 kcal/mol), and 1,3-cyclohexadiene, a conjugated diene, has A/Chydrog = 230 kj/mol (-55.0 kcal/mol). As noted in Section 14.1, this value for 1,3-cyclohexadiene is a bit less than twice that for cyclohexene because conjugated dienes are more stable than isolated dienes. [Pg.520]

Epoxidation of conjugated dienes can be regioselective when one double bond is more electron-rich than the other otherwise mixtures of mono- and diepoxides will be obtained. When the alkene contains an adjacent stereocenter, the epoxidation can be diastereoselective [2]. Hydroxy groups can function as directing groups, causing the epoxidation to take place syn to the alcohol [2, 3]. [Pg.315]

Conjugated dienes can be epoxidized to provide vinylepoxides. Cyclic substrates react with Katsuki s catalyst to give vinylepoxides with high ees and moderate yields [17], whereas Jacobsen s catalyst gives good yields but moderate enantiose-lectivities [18]. Acyclic substrates were found to isomerize upon epoxidation (Z, )-conjugated dienes reacted selectively at the (Z)-alkene to give trans-vinylepoxides (Scheme 9.4a) [19]. This feature was utilized in the formal synthesis of leuko-triene A4 methyl ester (Scheme 9.4b) [19]. [Pg.318]


See other pages where Conjugated alkenes dienes is mentioned: [Pg.122]    [Pg.86]    [Pg.127]    [Pg.213]    [Pg.337]    [Pg.517]    [Pg.399]    [Pg.405]    [Pg.399]    [Pg.405]    [Pg.1171]    [Pg.484]    [Pg.257]   
See also in sourсe #XX -- [ Pg.95 ]




SEARCH



1,3-Diene, conjugated

Alkene conjugated diene

Alkene conjugated diene

Alkenes dienes

Conjugate 1,3 dienes

Conjugation Dienes, conjugated)

Dienes conjugated

© 2024 chempedia.info