Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixed conduction transport

In many transition-metal oxides and sulfides, ionic conductivity is augmented by electronic conductivity, and transport numbers need to include contributions from electrons and holes. These mixed conductors are described in Section 8.8. [Pg.255]

Conduction 67 Mixed transport modes 6.8 General References... [Pg.14]

Flow along uncharged surfaces has been considered in secs. I.6.4f and e. surface conduction in sec. I.6.6d and mixed transport phenomena, simultaneously involving electrical, mechanical and diffusion types of transport In sec. 1.6.7. Specifically the Nemst-Planck equation ((1.6.7.1 or 2]) is recalled, formulating ion fluxes caused by the sum-effect of diffusion, conduction and convection. [Pg.478]

Pfaff, E.M., Kaletsch, A. and Broeckmann, C. (2012) Design of a mixed ionic/electronic conducting oxygen transport membrane pilot module. Chemical... [Pg.115]

ABO3 perovskite-type oxides with transition-metal ions at the B-site have high ionic and electronic transport in the form of p or n semi-conductivity (mixed ionic and electronic conductivity), caused by different oxidation states of the transition-metal cation. For dense ceramic membranes, perovskite-type oxides with the following cations are preferred A = Ln (lanthanide ion), Ca, Sr, Ba B = Cr, Mn, Fe, Co, Ni, Cu. [Pg.1234]

The demonstration unit was later transported to the CECOS faciHty at Niagara Falls, New York. In tests performed in 1985, approximately 3400 L of a mixed waste containing 2-chlorophenol [95-57-8] nitrobenzene [98-95-3] and 1,1,2-trichloroethane [79-00-5] were processed over 145 operating hours 2-propanol was used as a supplemental fuel the temperature was maintained at 615 to 635°C. Another 95-h test was conducted on a PCB containing transformer waste. Very high destmction efficiencies were achieved for all compounds studied (17). A later bench-scale study, conducted at Smith Kline and French Laboratories in conjunction with Modar (18), showed that simulated chemical and biological wastes, a fermentation broth, and extreme thermophilic bacteria were all completely destroyed within detection limits. [Pg.499]

A quite different approach was introduced in the early 1980s [44-46], in which a dense solid electrode is fabricated which has a composite microstructure in which particles of the reactant phase are finely dispersed within a solid, electronically conducting matrix in which the electroactive species is also mobile. There is thus a large internal reactant/mixed-conductor matrix interfacial area. The electroactive species is transported through the solid matrix to this interfacial region, where it undergoes the chemical part of the electrode reaction. Since the matrix material is also an electronic conductor, it can also act as the electrode s current collector. The electrochemical part of the reaction takes place on the outer surface of the composite electrode. [Pg.375]

AU these features—low values of a, a strong temperature dependence, and the effect of impurities—are reminiscent of the behavior of p- and n-type semiconductors. By analogy, we can consider these compounds as ionic semiconductors with intrinsic or impurity-type conduction. As a rule (although not always), ionic semiconductors have unipolar conduction, due to ions of one sign. Thus, in compounds AgBr, PbCl2, and others, the cation transport number is close to unity. In the mixed oxide ZrOj-nYjOj, pure 0 anion conduction t = 1) is observed. [Pg.135]

Many types of oxide layers have a certain, not very high electrical conductivity of up to 10 to 10 S/cm. Conduction may be cationic (by ions) or anionic (by or OH ions), or of the mixed ionic and electronic type. Often, charge transport occurs by a semiconductor hole-type mechanism, hence, oxides with ionic and ionic-hole conduction are distinguished (in the same sense as p-type and n-type conduction in the case of semiconductors, but here with anions or cations instead of the electrons, and the corresponding ionic vacancies instead of the electron holes). Electronic conduction is found for the oxide layers on iron group metals and on chromium. [Pg.303]

Solid mixed ionic-electronic conductors (MIECs) exhibit both ionic and electronic (electron-hole) conductivity. Naturally, in any material there are in principle nonzero electronic and ionic conductivities (a i, a,). It is customary to limit the use of the term MIEC to those materials in which a, and 0, 1 do not differ by more than two orders of magnitude. It is also customary to use the term MIEC if a, and Ogi are not too low (o, a i 10 S/cm). Obviously, there are no strict rules. There are processes where the minority carriers play an important role despite the fact that 0,70 1 exceeds those limits and a, aj,i< 10 S/cm. In MIECs, ion transport normally occurs via interstitial sites or by hopping into a vacant site or a more complex combination based on interstitial and vacant sites, and electronic (electron/hole) conductivity occurs via delocalized states in the conduction/valence band or via localized states by a thermally assisted hopping mechanism. With respect to their properties, MIECs have found wide applications in solid oxide fuel cells, batteries, smart windows, selective membranes, sensors, catalysis, and so on. [Pg.436]

The above mechanistic aspect of electron transport in electroactive polymer films has been an active and chemically rich research topic (13-18) in polymer coated electrodes. We have called (19) the process "redox conduction", since it is a non-ohmic form of electrical conductivity that is intrinsically different from that in metals or semiconductors. Some of the special characteristics of redox conductivity are non-linear current-voltage relations and a narrow band of conductivity centered around electrode potentials that yield the necessary mixture of oxidized and reduced states of the redox sites in the polymer (mixed valent form). Electron hopping in redox conductivity is obviously also peculiar to polymers whose sites comprise spatially localized electronic states. [Pg.414]

Thus, measurement of the total conductivity together with the cell voltage allows the transport numbers of the ions to be determined (Fig. 8.17). The results show that at lower temperatures proton conductivity is of greatest importance, at middle temperatures oxygen ion conductivity becomes dominant, and at high temperatures the material is predominantly a hole conductor. Between these temperatures, at approximately 350°C the solid is a mixed H+ and O2- conductor while at approximately 650°C it is a mixed hole and O2- conductor. [Pg.387]


See other pages where Mixed conduction transport is mentioned: [Pg.7]    [Pg.183]    [Pg.442]    [Pg.6]    [Pg.298]    [Pg.457]    [Pg.326]    [Pg.172]    [Pg.83]    [Pg.172]    [Pg.330]    [Pg.655]    [Pg.4050]    [Pg.7]    [Pg.442]    [Pg.85]    [Pg.44]    [Pg.252]    [Pg.106]    [Pg.300]    [Pg.408]    [Pg.537]    [Pg.1200]    [Pg.239]    [Pg.519]    [Pg.202]    [Pg.78]    [Pg.317]    [Pg.113]    [Pg.487]    [Pg.307]    [Pg.361]    [Pg.13]    [Pg.171]    [Pg.247]    [Pg.380]    [Pg.389]   
See also in sourсe #XX -- [ Pg.112 ]




SEARCH



Conductivity mixed

Mixed conduction

Mixing conductivities

Transport, conductance

© 2024 chempedia.info