Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concept parameters

This method utilizes essentially the concept developed by Fitzer in 1955. According to the principle of three-parameter corresponding states, the compressibility factor z, for a fluid of acentric factor w, is obtained by interpolating between the compressibilities Zj and Z2 for the two fluids having acentric factors w, and (p -... [Pg.119]

To realize a process integrated quality control the conception shown in fig. 2 was followed. The casting process which is influenced by process parameters like thermal economy, alloy composition or black wash will be pursued with particulary to the problematic nature adjusted sensoring systems. On basic factors orientated sensoring systems like microfocus radioscopy, and tomography will be employed and correlated with sensoring systems which can be applicated under industrial conditions. [Pg.11]

Those, on industrial applications orientated systems, are acoustic emission and the temperature analysis of the casting. Realizing this conception (fig. 2) will enable to develop a process parameter control and consequently to stabilize the casting process. [Pg.11]

The sensibility to defects and other testing parameters of pieces can be modified by the geometry of the piece to be controlled and the conception of the probe. It is sufficient to set the direction of circulation of eddy currents, regulate the magnetic field intensity and choose the coil of the appropriate size. [Pg.290]

We used the concept of sound velocity dispersion for explanation of the shift of pulse energy spectrum maximum, transmitted through the medium, and correlation of the shift value with function of medium heterogeneity. This approach gives the possibility of mathematical simulation of the influence of both medium parameters and ultrasonic field parameters on the nature of acoustic waves propagation in a given medium. [Pg.734]

For the Berry phase, we shall quote a definition given in [164] ""The phase that can be acquired by a state moving adiabatically (slowly) around a closed path in the parameter space of the system. There is a further, somewhat more general phase, that appears in any cyclic motion, not necessarily slow in the Hilbert space, which is the Aharonov-Anandan phase [10]. Other developments and applications are abundant. An interim summai was published in 1990 [78]. A further, more up-to-date summary, especially on progress in experimental developments, is much needed. (In Section IV we list some publications that report on the experimental determinations of the Berry phase.) Regarding theoretical advances, we note (in a somewhat subjective and selective mode) some clarifications regarding parallel transport, e.g., [165], This paper discusses the projective Hilbert space and its metric (the Fubini-Study metric). The projective Hilbert space arises from the Hilbert space of the electronic manifold by the removal of the overall phase and is therefore a central geometrical concept in any treatment of the component phases, such as this chapter. [Pg.105]

The OPLS force field is described in twtt papers, one discussing parameters for proteins W. L. Jorgensen and J. Tirado-Rives,/. Amer. (. hem. Soc., 110, 1557 (iy8K) and on e discii ssin g param eters for n iicleotide bases [J. Pranata, S. Wiersch ke, and W. L. Jorgen sen. , /.. Amer. Chem. Soc.. 117, 281(1 ( 1991)1. The force field uses the united atom concept ftir many, but not all. hydrttgens attached to carbons to allow faster calculation s on macromolecular systems. The amino and nucleic acid residue templates in HyperChein automatically switch to a united atom representation where appropriate when th e OPLS option is selected. [Pg.192]

The finite element results obtained for various values of (3 are compared with the analytical solution in Figure 2.27. As can be seen using a value of /3 = 0.5 a stable numerical solution is obtained. However, this solution is over-damped and inaccurate. Therefore the main problem is to find a value of upwinding parameter that eliminates oscillations without generating over-damped results. To illustrate this concept let us consider the following convection-diffusion equation... [Pg.61]

The concept of a parameter set is an important (but often inconvenient) aspect of molecular mechanics calculations. Molecular mechanics tries to use experimental data to replace a priori computation, but in many situations the experimental data is not known and a parameter is missing. Collecting parameters, verification of their validity, and the relationship of these molecular mechanics parameters to chemical and structural moieties are all important and difficult topics. [Pg.196]

Molecular mechanics depends on the concept of atom types and parameters associated with these atom types. Since the number of atom types is very large for the universe of possible molecules, parameters will probably be missing for a random new molecule unless a force field has been developed for molecules similar to the new molecule. Molecular mechanics predicts how the new molecule will behave based upon the behavior of known, similar molecules. [Pg.215]

HyperChem quantum mechanical calculations are ab initio and semi-empirical. Ab initio calculations use parameters (contracted basis functions) associated with shells, such as an s shell, sp shell, etc., or atomic numbers (atoms). Semi-empirical calculations use parameters associated with specific atomic numbers. The concept of atom types is not used in the conventional quantum mechanics methods. Semi-empirical quantum mechanics methods use a rigorous quantum mechanical formulation combined with the use of empirical parameters obtained from comparison with experiment. If parameters are available for the atoms of a given molecule, the ab initio and semi-empirical calculations have an a priori aspect when compared with a molecular mechanics calculation, letting... [Pg.215]

Of the various parameters introduced in the Eyring theory, only r—or j3, which is directly proportional to it-will be further considered. We shall see that the concept of relaxation time plays a central role in discussing all the deformation properties of bulk polymers and thus warrants further examination, even though we have introduced this quantity through a specific model. [Pg.98]

Our strategy in proceeding, therefore, is to write separate expressions for the forces cited in items (1) and (2), and then set them equal to each other as required by item (3). Since we have discussed osmotic effects in Chap. 8 and elastic forces in Chap. 3, we shall invoke certain concepts and relationships from these chapters in this discussion. In this derivation we continue to omit numerical coefficients and some of the less pertinent parameters (although we retain Vj for the sake of Problem 5 at the end of the chapter), and focus attention on the relationship between a, M, and the interaction parameter x-... [Pg.618]

Cell separation techniques that use an inward flow component are referred to as countercurrent separation techniques. The concept of countercurrent separation is compHcated by biological variations of all parameters in equation 4. [Pg.522]

The degree of data spread around the mean value may be quantified using the concept of standard deviation. O. If the distribution of data points for a certain parameter has a Gaussian or normal distribution, the probabiUty of normally distributed data that is within Fa of the mean value becomes 0.6826 or 68.26%. There is a 68.26% probabiUty of getting a certain parameter within X F a, where X is the mean value. In other words, the standard deviation, O, represents a distance from the mean value, in both positive and negative directions, so that the number of data points between X — a and X -H <7 is 68.26% of the total data points. Detailed descriptions on the statistical analysis using the Gaussian distribution can be found in standard statistics reference books (11). [Pg.489]

Operational Constraints and Problems. Synthetic ammonia manufacture is a mature technology and all fundamental technical problems have been solved. However, extensive know-how in the constmction and operation of the faciUties is required. Although apparendy simple in concept, these facihties are complex in practice. Some of the myriad operational parameters, such as feedstock source or quaUty, change frequendy and the plant operator has to adjust accordingly. Most modem facihties rely on computers to monitor and optimize performance on a continual basis. This situation can produce problems where industrial expertise is lacking. [Pg.84]

In the earliest days of on-line databases, all three indexing types coUapsed into the third. Using older manual tools, it was difficult to coordinate more than two or three concepts, but the computer made that easier. Each concept in a search can be represented by a string of synonyms or alternatives, and searching can be done for two such parameters or more. Thus, Boolean logic expressions can easily be constmcted as follows ... [Pg.59]


See other pages where Concept parameters is mentioned: [Pg.66]    [Pg.209]    [Pg.1180]    [Pg.66]    [Pg.209]    [Pg.1180]    [Pg.110]    [Pg.198]    [Pg.260]    [Pg.68]    [Pg.729]    [Pg.625]    [Pg.87]    [Pg.652]    [Pg.1519]    [Pg.2363]    [Pg.2367]    [Pg.2827]    [Pg.2832]    [Pg.73]    [Pg.341]    [Pg.339]    [Pg.349]    [Pg.215]    [Pg.126]    [Pg.170]    [Pg.325]    [Pg.442]    [Pg.654]    [Pg.46]    [Pg.130]    [Pg.515]    [Pg.60]    [Pg.410]    [Pg.446]   
See also in sourсe #XX -- [ Pg.1180 ]




SEARCH



Critical heat flux, system parameter concept

Small parameter concept

Solubility parameter concept

Solubility parameter concept assumptions

Solubility parameter concept discussion

Solubility parameter concept volume effects

© 2024 chempedia.info