Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pulse energy

We used the concept of sound velocity dispersion for explanation of the shift of pulse energy spectrum maximum, transmitted through the medium, and correlation of the shift value with function of medium heterogeneity. This approach gives the possibility of mathematical simulation of the influence of both medium parameters and ultrasonic field parameters on the nature of acoustic waves propagation in a given medium. [Pg.734]

As already mentioned, electronically resonant, two-pulse impulsive Raman scattering (RISRS) has recently been perfonned on a number of dyes [124]. The main difference between resonant and nom-esonant ISRS is that the beats occur in the absorption of tlie probe rather than the spectral redistribution of the probe pulse energy [124]. These beats are out of phase with respect to the beats that occur in nonresonant ISRS (cosinelike rather tlian sinelike). RISRS has also been shown to have the phase of oscillation depend on the detuning from electronic resonance and it has been shown to be sensitive to the vibrational dynamics in both the ground and excited electronic states [122. 124]. [Pg.1211]

SFIG or SFG from a medium that has a strong response in a separate detection anu. By this means, one may fiilly compensate for variations not only in pulse energy, but also in the temporal and spatial substructure of the laser pulses. Some experiments may require measurement of the phase of the nonlinear signal [57]. [Pg.1281]

Pumping is with a flashlamp, as in the case of the ruby laser, and a pulse energy of the order 1 J may be achieved. Frequency doubling (second harmonic generation) can provide tunable radiation in the 360-400 nm region. [Pg.348]

A further advantage, compared with the alexandrite laser, apart from a wider tuning range, is that it can operate in the CW as well as in the pulsed mode. In the CW mode the Ti -sapphire laser may be pumped by a CW argon ion laser (see Section 9.2.6) and is capable of producing an output power of 5 W. In the pulsed mode pumping is usually achieved by a pulsed Nd YAG laser (see Section 9.2.3) and a pulse energy of 100 mJ may be achieved. [Pg.348]

M. R. Schioeth, Pulse-Energi dElectrostatic Precipitators, paper at the Third Conference on Electrostatic Precipitation, Albano-Padova, Italy, October, 1987, F. L. Smidth Co., Valby, Denmark. [Pg.417]

Ruby lasers are frequently operated in the normal pulse mode, ie, pulse durations are around 1 ms and pulse energy up to tens of joules, or in the... [Pg.7]

MPI is especially valuable for elemental analyses with typical useful yield of 10 . Because SALI is laser-based, expected improvements over the next few years, in particular for vacuum-ultraviolet laser technology, should have a significant impact. High repetition rate Nd—YAG systems with sufficient pulse energy are already available to 50 Hz, and probably can be extended to a few hundred Hz. [Pg.568]

Company Model Maximum repetition rate [Hz] Pulse energy [mJ] ... [Pg.232]

Less pronounced thermal diffusion provides better lateral and depth resolution and is the basis of successful application of femtosecond pulses in material processing and microstructuring [4.231, 4.232]. All-solid-state femtosecond lasers with a pulse duration of 100-200 fs and a pulse energy of approximately 1 mj have recently become commercially available [4.233, 4.234]. [Pg.233]

The potential of LA-based techniques for depth profiling of coated and multilayer samples have been exemplified in recent publications. The depth profiling of the zinc-coated steels by LIBS has been demonstrated [4.242]. An XeCl excimer laser with 28 ns pulse duration and variable pulse energy was used for ablation. The emission of the laser plume was monitored by use of a Czerny-Turner grating spectrometer with a CCD two-dimensional detector. The dependence of the intensities of the Zn and Fe lines on the number of laser shots applied to the same spot was measured and the depth profile of Zn coating was constructed by using the estimated ablation rate per laser shot. To obtain the true Zn-Fe profile the measured intensities of both analytes were normalized to the sum of the line intensities. The LIBS profile thus obtained correlated very well with the GD-OES profile of the same sample. Both profiles are shown in Fig. 4.40. The ablation rate of approximately 8 nm shot ... [Pg.235]

Fig. 4.42. Drill profiles through the two TiN rate). The titanium signal is given on the left coatings of 6.4 pm and 2.7 pm thickness (crater y-axis, the chromium signal on the right y-axis 120 pm, 100 m) pulse energy, 3 Hz repetition [4.244]. Fig. 4.42. Drill profiles through the two TiN rate). The titanium signal is given on the left coatings of 6.4 pm and 2.7 pm thickness (crater y-axis, the chromium signal on the right y-axis 120 pm, 100 m) pulse energy, 3 Hz repetition [4.244].
A commercial fs-laser (CPA-10 Clark-MXR, MI, USA) was used for ablation. The parameters used for the laser output pulses were central wavelength 775 nm pulse energy -0.5 mj pulse duration 170-200 fs and repetition rate from single pulse operation up to 10 Hz. In these experiments the laser with Gaussian beam profile was used because of the lack of commercial beam homogenizers for femtosecond lasers. [Pg.238]

Figure 13-18. Pulse energy ratio for frequency variations. Figure 13-18. Pulse energy ratio for frequency variations.
Figure 10-8. Emission spectra of a free standing film of a blend system consisting of 0.9% MEH-PPV in polystyrene with ca. I011 cm 3 TiOj-particlcs. The nanoparlicles act as optical scattering centers. The emission spectrum is depicted for two different excitation pulse energies. Optical excitation was accomplished with laser pulses of duration I Ons and wavelength 532 nm (according to Ref. 171). Figure 10-8. Emission spectra of a free standing film of a blend system consisting of 0.9% MEH-PPV in polystyrene with ca. I011 cm 3 TiOj-particlcs. The nanoparlicles act as optical scattering centers. The emission spectrum is depicted for two different excitation pulse energies. Optical excitation was accomplished with laser pulses of duration I Ons and wavelength 532 nm (according to Ref. 171).
Figure 10-10. (a) Semilogarillnnic plol of ihc stimulated emission transients for various excitation pulse energies measured for LPPP on glass. The excitation pulses have a duration of 150 fs and are centered at 400 nm. The probe pulse were spectrally filtered (Ao=500nin, Aa=l0nm). (b) Emission spectra recorded for the same excitation conditions. The spectra are normalized at the purely electronic emission baud (according lo Ref. [181). [Pg.173]

Figure 10-14. Inset Phololumincsccncc spectrum for low excitation pulse energy EP Main part (a) displays the spectrum for pump pulse energies well below the lasing threshold while (b) shows the spectrum obtained lor excitation with a pump energy close to the lasing threshold (c) presents the single mode-lasing spectrum emitted when the device is pumped well above threshold. The dashed lines indicate the zero line which is arbitrarily shifted in case of (b) and (c). Figure 10-14. Inset Phololumincsccncc spectrum for low excitation pulse energy EP Main part (a) displays the spectrum for pump pulse energies well below the lasing threshold while (b) shows the spectrum obtained lor excitation with a pump energy close to the lasing threshold (c) presents the single mode-lasing spectrum emitted when the device is pumped well above threshold. The dashed lines indicate the zero line which is arbitrarily shifted in case of (b) and (c).
Figure 10-15. Output vs. input energy characteristic of our laser device. The horizontal dashed curve indicates the zero line. A clear laser threshold behavior at an excitation pulse energy ol 1.5 nJ is observed. Below the lasing threshold only isotropic phololuminesccncc is entitled. Above threshold the device emits low divergence single mode laser emission perpendicular to the surface, as schematically shown in the inset. The laser light is polarized parallel to the grating lines. Figure 10-15. Output vs. input energy characteristic of our laser device. The horizontal dashed curve indicates the zero line. A clear laser threshold behavior at an excitation pulse energy ol 1.5 nJ is observed. Below the lasing threshold only isotropic phololuminesccncc is entitled. Above threshold the device emits low divergence single mode laser emission perpendicular to the surface, as schematically shown in the inset. The laser light is polarized parallel to the grating lines.
Figure 9-29. (a) Emission of" ni-Ll PP al dilTcrenl exclusion laser pulse energies, (b) Full width ai half maximum and peak position ill" ihe m-LPPP emission versus cxcilalion laser pulse energy. [Pg.477]

Figure 10-7. (a) Absorption spectrum of 3 LPPP. The arrow indicates the spectral po-.oj, silion of the excitation pulse in the time-re- i solved measurements, (b) PL spectrum for LPPP for low excitation pulse energies, (c) Differential transmission spectrum observed in LPPP after photoexcitation with a femtosecond pulse having a pulse energy of 80 uJ at a wavelength of 400 nm. The arrow indicates the spectral position of the probe pulses used for a more detailed investigation of the gain dynamics. [Pg.485]

Figure 10-15 shows the output vs. input energy relation with a clear threshold at a pump pulse energy of approximately 1.5 nJ. This value is an order of magnitude lower than the threshold for the observation of ASE in simple planar waveguides, i.e. without distributed feedback but prepared with the same conjugated polymer. [Pg.489]


See other pages where Pulse energy is mentioned: [Pg.1970]    [Pg.1971]    [Pg.1989]    [Pg.2962]    [Pg.191]    [Pg.7]    [Pg.8]    [Pg.1489]    [Pg.639]    [Pg.232]    [Pg.237]    [Pg.598]    [Pg.600]    [Pg.612]    [Pg.612]    [Pg.163]    [Pg.171]    [Pg.172]    [Pg.173]    [Pg.477]    [Pg.486]    [Pg.487]    [Pg.488]    [Pg.163]    [Pg.476]    [Pg.236]    [Pg.263]    [Pg.46]    [Pg.77]   
See also in sourсe #XX -- [ Pg.609 , Pg.613 ]

See also in sourсe #XX -- [ Pg.203 ]

See also in sourсe #XX -- [ Pg.175 ]




SEARCH



Doses and Temperatures to Initiate Explosives by Pulsed High-Energy Electrons

Energy laser pulse

Energy pulsed mode microwaves

Energy resolution pulsed lasers

Hard pulse energy

Laser-pulse energy requirements

Measuring laser power and pulse energy

Potential energy surface Pulse method

Potential energy surface Pulse-measurements

Potential energy surface pulse sequence

Pulsed-field ionization zero-electron-kinetic energy

Soft pulse energy

The Relationship Between Pulse-Height Distribution and Energy Spectrum

© 2024 chempedia.info