Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Computers mathematical models

As stated previously, more refined predictions require both a more extensive data base and a more sophisticated (computer) mathematical model. Such a procedure is considered within the range of feasibility. [Pg.242]

Taken together with the change in shear modulus, these phenomena provide clear evidence for the loss of molecular configurational freedom that takes place near the transition, although the precise nature of the freezing mechanism and exact specification of the degrees of freedom affected are not known either fi om direct observation or via computer-mathematical modeling. [Pg.1235]

The Supplement B (reference) contains a description of the process to render an automatic construction of mathematical models with the application of electronic computer. The research work of the Institute of the applied mathematics of The Academy of Sciences ( Ukraine) was assumed as a basis for the Supplement. The prepared mathematical model provides the possibility to spare strength and to save money, usually spent for the development of the mathematical models of each separate enterprise. The model provides the possibility to execute the works standard forms and records for the non-destructive inspection in complete correspondence with the requirements of the Standard. [Pg.26]

The solution adopted by us is the use of computer simulations of mathematical models of the process and the mock-up situations. Eventually, simulation techniques will become so accurate, that the mock-up step can be discarded. For the time being it is reasonable to use such models to generate corrections for smaller differences between mock-up and process. [Pg.1056]

The classical microscopic description of molecular processes leads to a mathematical model in terms of Hamiltonian differential equations. In principle, the discretization of such systems permits a simulation of the dynamics. However, as will be worked out below in Section 2, both forward and backward numerical analysis restrict such simulations to only short time spans and to comparatively small discretization steps. Fortunately, most questions of chemical relevance just require the computation of averages of physical observables, of stable conformations or of conformational changes. The computation of averages is usually performed on a statistical physics basis. In the subsequent Section 3 we advocate a new computational approach on the basis of the mathematical theory of dynamical systems we directly solve a... [Pg.98]

We further discuss how quantities typically measured in the experiment (such as a rate constant) can be computed with the new formalism. The computations are based on stochastic path integral formulation [6]. Two different sources for stochasticity are considered. The first (A) is randomness that is part of the mathematical modeling and is built into the differential equations of motion (e.g. the Langevin equation, or Brownian dynamics). The second (B) is the uncertainty in the approximate numerical solution of the exact equations of motion. [Pg.264]

A series of monographs and correlation tables exist for the interpretation of vibrational spectra [52-55]. However, the relationship of frequency characteristics and structural features is rather complicated and the number of known correlations between IR spectra and structures is very large. In many cases, it is almost impossible to analyze a molecular structure without the aid of computational techniques. Existing approaches are mainly based on the interpretation of vibrational spectra by mathematical models, rule sets, and decision trees or fuzzy logic approaches. [Pg.529]

Statistical analysis can range from relatively simple regression analysis to complex input/output and mathematical models. The advent of the computer and its accessibiUty in most companies has broadened the tools a researcher has to manipulate data. However, the results are only as good as the inputs. Most veteran market researchers accept the statistical tools available to them but use the results to implement their judgment rather than uncritically accepting the machine output. [Pg.535]

Both the need to reduce experimental costs and increasing reHabiHty of mathematical modeling have led to growing acceptance of computer-aided process analysis and simulation, although modeling should not be considered a substitute for either practical experience or reHable experimental data. [Pg.139]

Considerable work has been done on mathematic models of the extmsion process, with particular emphasis on screw design. Good results are claimed for extmsion of styrene-based resins using these mathematical methods (229,232). With the advent of low cost computers, closed-loop control of... [Pg.523]

Distillation Columns. Distillation is by far the most common separation technique in the chemical process industries. Tray and packed columns are employed as strippers, absorbers, and their combinations in a wide range of diverse appHcations. Although the components to be separated and distillation equipment may be different, the mathematical model of the material and energy balances and of the vapor—Hquid equiUbria are similar and equally appHcable to all distillation operations. Computation of multicomponent systems are extremely complex. Computers, right from their eadiest avadabihties, have been used for making plate-to-plate calculations. [Pg.78]

Theoretically based correlations (or semitheoretical extensions of them), rooted in thermodynamics or other fundamentals are ordinarily preferred. However, rigorous theoretical understanding of real systems is far from complete, and purely empirical correlations typically have strict limits on apphcabihty. Many correlations result from curve-fitting the desired parameter to an appropriate independent variable. Some fitting exercises are rooted in theory, eg, Antoine s equation for vapor pressure others can be described as being semitheoretical. These distinctions usually do not refer to adherence to the observations of natural systems, but rather to the agreement in form to mathematical models of idealized systems. The advent of readily available computers has revolutionized the development and use of correlation techniques (see Chemometrics Computer technology Dimensional analysis). [Pg.232]

With these kinetic data and a knowledge of the reactor configuration, the development of a computer simulation model of the esterification reaction is iavaluable for optimising esterification reaction operation (25—28). However, all esterification reactions do not necessarily permit straightforward mathematical treatment. In a study of the esterification of 2,3-butanediol and acetic acid usiag sulfuric acid catalyst, it was found that the reaction occurs through two pairs of consecutive reversible reactions of approximately equal speeds. These reactions do not conform to any simple first-, second-, or third-order equation, even ia the early stages (29). [Pg.375]

Classification Process simulation refers to the activity in which mathematical models of chemical processes and refineries are modeled with equations, usually on the computer. The usual distinction must be made between steady-state models and transient models, following the ideas presented in the introduction to this sec tion. In a chemical process, of course, the process is nearly always in a transient mode, at some level of precision, but when the time-dependent fluctuations are below some value, a steady-state model can be formulated. This subsection presents briefly the ideas behind steady-state process simulation (also called flowsheeting), which are embodied in commercial codes. The transient simulations are important for designing startup of plants and are especially useful for the operating of chemical plants. [Pg.508]

The Prandtl mixing length concept is useful for shear flows parallel to walls, but is inadequate for more general three-dimensional flows. A more complicated semiempirical model commonly used in numerical computations, and found in most commercial software for computational fluid dynamics (CFD see the following subsection), is the A — model described by Launder and Spaulding (Lectures in Mathematical Models of Turbulence, Academic, London, 1972). In this model the eddy viscosity is assumed proportional to the ratio /cVe. [Pg.672]

Once the objective and the constraints have been set, a mathematical model of the process can be subjected to a search strategy to find the optimum. Simple calculus is adequate for some problems, or Lagrange multipliers can be used for constrained extrema. When a Rill plant simulation can be made, various alternatives can be put through the computer. Such an operation is called jlowsheeting. A chapter is devoted to this topic by Edgar and Himmelblau Optimization of Chemical Processes, McGraw-HiU, 1988) where they list a number of commercially available software packages for this purpose, one of the first of which was Flowtran. [Pg.705]

Mathematical modeling, using digital computers, aids in performing a systems-type analysis for either the entire system or parts of it. By means of integer or linear-programming techniques, optimum systems can be identified. The dynamic performance of these can then be determined by simulation techniques. [Pg.1911]

For field-oriented controls, a mathematical model of the machine is developed in terms of rotating field to represent its operating parameters such as /V 4, 7, and 0 and all parameters that can inlluence the performance of the machine. The actual operating quantities arc then computed in terms of rotating field and corrected to the required level through open- or closed-loop control schemes to achieve very precise speed control. To make the model similar to that lor a d.c. machine, equation (6.2) is further resolved into two components, one direct axis and the other quadrature axis, as di.sciis.sed later. Now it is possible to monitor and vary these components individually, as with a d.c. machine. With this phasor control we can now achieve a high dynamic performance and accuracy of speed control in an a.c. machine, similar to a separately excited d.c. machine. A d.c. machine provides extremely accurate speed control due to the independent controls of its field and armature currents. [Pg.106]

Empirical energy functions can fulfill the demands required by computational studies of biochemical and biophysical systems. The mathematical equations in empirical energy functions include relatively simple terms to describe the physical interactions that dictate the structure and dynamic properties of biological molecules. In addition, empirical force fields use atomistic models, in which atoms are the smallest particles in the system rather than the electrons and nuclei used in quantum mechanics. These two simplifications allow for the computational speed required to perform the required number of energy calculations on biomolecules in their environments to be attained, and, more important, via the use of properly optimized parameters in the mathematical models the required chemical accuracy can be achieved. The use of empirical energy functions was initially applied to small organic molecules, where it was referred to as molecular mechanics [4], and more recently to biological systems [2,3]. [Pg.7]

The potential energy function presented in Eqs. (2) and (3) represents the minimal mathematical model that can be used for computational studies of biological systems. Currently,... [Pg.11]

Central to the quality of any computational smdy is the mathematical model used to relate the structure of a system to its energy. General details of the empirical force fields used in the study of biologically relevant molecules are covered in Chapter 2, and only particular information relevant to nucleic acids is discussed in this chapter. [Pg.450]

Burns, R.S. (1991) A Multivariable Mathematical Model for Simulating the Total Motion of Surface Ships. In Proc. European Simulation Multiconference, The Society for Computer Simulation International, Copenhagen, Denmark, 17-19 June. [Pg.428]

MIE Theory a complex mathematical model that allows the computation of the amount of energy (light) scattered by spherical particles. [Pg.536]

Catalytic crackings operations have been simulated by mathematical models, with the aid of computers. The computer programs are the end result of a very extensive research effort in pilot and bench scale units. Many sets of calculations are carried out to optimize design of new units, operation of existing plants, choice of feedstocks, and other variables subject to control. A background knowledge of the correlations used in the "black box" helps to make such studies more effective. [Pg.17]

Develop a mathematical model of the system, which is tested and fitted to the system with the aid of a computer. [Pg.1035]


See other pages where Computers mathematical models is mentioned: [Pg.714]    [Pg.714]    [Pg.434]    [Pg.1237]    [Pg.714]    [Pg.714]    [Pg.434]    [Pg.1237]    [Pg.6]    [Pg.264]    [Pg.9]    [Pg.17]    [Pg.18]    [Pg.287]    [Pg.625]    [Pg.157]    [Pg.178]    [Pg.327]    [Pg.79]    [Pg.83]    [Pg.530]    [Pg.509]    [Pg.742]    [Pg.1611]    [Pg.108]    [Pg.7]    [Pg.10]    [Pg.211]    [Pg.5]    [Pg.958]   
See also in sourсe #XX -- [ Pg.348 , Pg.349 , Pg.350 , Pg.351 , Pg.352 , Pg.353 , Pg.354 , Pg.355 ]




SEARCH



Computational chemistry mathematical models

Computational mathematical models capturing

Computational mathematics

Computational methods mathematical modeling

Computer engineering, mathematical modeling

Computer software mathematical modeling

Mathematical and Computer Models

Mathematical model computational results

Mathematical modeling computational metabolic models

Mathematical modeling computer engineering aspects

© 2024 chempedia.info