Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes with chemical reaction

Penetration theoiy often is used in analyzing absorption with chemical reaction because it makes no assumption about the depths of penetration of the various reacting species, and it gives a more accurate result when the diffusion coefficients of the reacting species are not equal. When the reaction process is veiy complex, however, penetration theoiy is more difficult to use than film theory, and the latter method normally is preferred. [Pg.604]

Desorption with Chemical Reaction When chemical reactions are involved in a stripping operation, the design problem can become extremely complex. In fact, much less is known about this very important process than is known about absorption. A classic work on this subject is that of Shah and Sharma [Trans. In.st. Chem. Tng., 54, 1 (1976)], which is recommended to those in need of more details. [Pg.1369]

An industrial chemical reacdor is a complex device in which heat transfer, mass transfer, diffusion, and friction may occur along with chemical reaction, and it must be safe and controllable. In large vessels, questions of mixing of reactants, flow distribution, residence time distribution, and efficient utilization of the surface of porous catalysts also arise. A particular process can be dominated by one of these factors or by several of them for example, a reactor may on occasion be predominantly a heat exchanger or a mass-transfer device. A successful commercial unit is an economic balance of all these factors. [Pg.2070]

The second category of DDT processes, which occur in smooth tubes, is considerably more complex, because it involves gas-dynamic coupling of turbulent flow with chemical reactions and a variety of instability processes. [Pg.198]

The simulation example DRY is based directly on the above treatment, whereas ENZDYN models the case of unsteady-state diffusion, when combined with chemical reaction. Unsteady-state heat conduction can be treated in an exactly analogous manner, though for cases of complex geometry, with multiple heat sources and sinks, the reader is referred to specialist texts, such as Carslaw and Jaeger (1959). [Pg.227]

Determination of organolead metabolites of tetraalkyllead in urine can be carried out after solid-phase enrichment and end analysis using reversed-phase HPLC with chemical reaction detector and by LC-MS (thermospray127). The chemical derivation consists of conversion to the dialky Head form, as shown in reaction 1, followed by complex formation with 4-(2-pyridylazo)resorcinol (11) and spectrophotometic measurement at 515 nm128. [Pg.442]

BIOUPTAKE WHEN MASS TRANSFER IS COUPLED WITH CHEMICAL REACTION (COMPLEX MEDIA)... [Pg.178]

Conventional extraction with chemical reaction is used for solutes that are insoluble in the organic phase unless they react with a reagent present in that phase. An example of this is the extraction of metal ions described by Eq. (15.8). In this case, if the organic phase is replaced by a W/O microemulsion containing the reactant, there is usually extraction enhancement due to the solubilization of the metal complex in the microphase. There are two possible ways of forming a W/O microemulsion in the solvent phase ... [Pg.662]

With chemical reactions, the exponents in a rate expression are usually integers. However, the exponents can be fractions or even negative depending on the complexity of the reaction. Reaction order should not be confused with molecularity. Order is an empirical concept whereas molecularity refers to the actual molecular process. However, for elementary reactions, the reaction order equals the molecularity. See Chemical Kinetics Molecularity First-Order Reactions Rate Constants... [Pg.529]

The reason for constructing this rather complex model was that even though the mathematical equations may be easily set up using the dispersion model, the numerical solutions are quite involved and time consuming. Deans and Lapidus were actually concerned with the more complicated case of mass and heat dispersion with chemical reactions. For this case, the dispersion model yields a set of coupled nonlinear partial differential equations whose solution is quite formidable. The finite-stage model yields a set of differential-double-difference equations. These are ordinary differential equations, which are easier to solve than the partial differential equations of the dispersion model. The stirred-tank equations are of an initial-value type rather than the boundary-value type given by the dispersion model, and this fact also simplifies the numerical work. [Pg.156]

The chemical engineer almost never encounters a single reaction in an ideal single-phase isothermal reactor. Real reactors are extremely complex with multiple reactions, multiple phases, and intricate flow patterns within the reactor and in inlet and outlet streams. An engineer needs enough information from this course to understand the basic concepts of reactions, flow, and heat management and how these interact so that she or he can begin to assemble simple analytical or intuitive models of the process. [Pg.6]

In crystallization a solid is formed fi om a supersaturated solution, fiequently with chemical reactions such as formation of complex crystals from ions in the solution. The dissolution of solids is the reverse of crystallization. We can write this process as... [Pg.370]

He was dealing in the frame of his dissertation with chemical reaction engineering, especially with modelling of complex reactions in axial dispersed tubular reactors. [Pg.261]

What makes the fabrication of composite materials so complex is that it involves simultaneous heat, mass, and momentum transfer, along with chemical reactions in a multiphase system with time-dependent material properties and boundary conditions. Composite manufacturing requires knowledge of chemistry, polymer and material science, rheology, kinetics, transport phenomena, mechanics, and control systems. Therefore, at first, composite manufacturing was somewhat of a mystery because very diverse knowledge was required of its practitioners. We now better understand the different fundamental aspects of composite processing so that this book could be written with contributions from many composite practitioners. [Pg.19]

In what follows, the preceding evaluation procedure is employed in a somewhat different mode, the main objective now being to obtain expressions for the heat or mass transfer coefficient in complex situations on the basis of information available for some simpler asymptotic cases. The order-of-magnitude procedure replaces the convective diffusion equation by an algebraic equation whose coefficients are determined from exact solutions available in simpler limiting cases [13,14]. Various cases involving free convection, forced convection, mixed convection, diffusion with reaction, convective diffusion with reaction, turbulent mass transfer with chemical reaction, and unsteady heat transfer are examined to demonstrate the usefulness of this simple approach. There are, of course, cases, such as the one treated earlier, in which the constants cannot be obtained because exact solutions are not available even for simpler limiting cases. In such cases, the procedure is still useful to correlate experimental data if the constants are determined on the basis of those data. [Pg.20]

The effects of complex coupled chemical reactions are sometimes more pronounced for a transient experiment than for a steady-state experiment, (a) Compare the experimental result obtained with a steady-state experiment and a CV (transient) experiment in the case of an EC mechanism, (b) In each case, how will the current response curve reflect the rate of the coupled chemical reaction (Gosser)... [Pg.733]

Two reasons are responsible, for the greater complexity of chemical reactions 1) atomic particles change their chemical identity during reaction and 2) rate laws are nonlinear in most cases. Can the kinetic concepts of fluids be used for the kinetics of chemical processes in solids Instead of dealing with the kinetic gas theory, we have to deal with point, defect thermodynamics and point defect motion. Transport theory has to be introduced in an analogous way as in fluid systems, but adapted to the restrictions of the crystalline state. The same is true for (homogeneous) chemical reactions in the solid state. Processes across interfaces are of great... [Pg.4]

VAN Swaaij, W. P. M. and Versteeg, G. F. Chem. Eng. Sci. 47 (1992) 3181. Mass transfer accompanied with complex reversible chemical reactions in gas-liquid systems An overview. [Pg.248]

When two or more gases are absorbed in systems involving chemical reactions, the system is much more complex. This topic is discussed later in the subsection Absorption with Chemical Reaction. ... [Pg.18]

As the diffusion of reactants to form the activated complex occurs in series with chemical reaction, the total resistance for the generation of products may be written as the sum of diffusional and chemical resistances. Thus,... [Pg.176]

For some reactions, especially those involving large molecules, it might be difficult to determine the precise structure and energy levels of the activated complex. In such cases, it can be useful to phrase the transition-state theory result for the rate constant in thermodynamic terms. It does not bring any new information but an alternative way of interpreting the result. This formulation leads to an expression where the preexponential factor is related to an entropy of activation that, at least qualitatively, can be related to the structure of the activated complex. We will encounter the thermodynamic formulation again in Chapter 10, in connection with chemical reactions in solution, where this formulation is particularly useful. [Pg.161]

The quenching of an excited state of a transition metal complex by chemical reaction can occur, in principle, by means of any of the intermolecular reactions which transition metal complexes are able to undergo. It should be noted, however, that intermolecular excited state reactions can only occur if they are fast enough to compete with the intramolecular deactivation modes of the excited state and with the other quenching processes (Fig. 2). [Pg.8]

The electrochemistry of alkyl- or arylthio substituted MPc complexes (which result in redshifted spectra, depending on the central metal) is often different from that of other substituted MPc complexes. For example irreversible ring reductions for the thio Pcs have been reported [60] often coupled with chemical reactions and adsorption of the reduction products. Overlaps of reduction couples to form... [Pg.66]

In the final chapter, Mori and coworkers analyze the complex interaction of particle granulation and/or agglomeration with chemical reactions in fluidized beds. [Pg.559]

Summing up, the influence of the kinetics of a chemical reaction on the vapor-liquid equilibrium is very complex. Physical distillation boundaries may disappear, while new kinetic stable and unstable nodes may appear. As result, the residue curve map with chemical reaction could look very different from the physical plots. As a consequence, evaluating the kinetic effects on residue curve maps is of great importance for conceptual design of reactive distillation systems. However, if the reaction rate is high enough such that the chemical equilibrium is reached quickly, the RCM simplifies considerably. But even in this case the analysis may be complicated by the occurrence of reactive azeotropes. [Pg.469]

The fabrication of composite laminates having a thermosetting resin matrix is a complex process. It involves simultaneous heal, mass, and momentum transfer along with chemical reaction in a multiphase system with time-dependent material properties and boundary conditions. Two critical problems, which arise during production of thick structural laminates, are the occurrence of severely detrimental voids and gradients in resin concentration. In order to efficiently manufacture quality parts, on-line control and process optimization are necessary, which in turn require a realistic model of the entire process. In this article we review current progress toward developing accurate void and resin flow portions of this overall process model. [Pg.101]

One of the characteristic features of the metal-bis-acetylide complexes in chemical reactions is that they undergo a ligand exchange reaction with metal dihalides in amines in the presence of a cuprous halide catalyst to produce a monoalkynyl-metal-monohalide complex (Eq. IS) which results from selective cleavage of the metal-carbon bond weakened by the /ram-alkynyl group in the bis-acetylide... [Pg.167]

When two or more gases are absorbed in systems involving chemical reactions, the situation is much more complex. This topic is discussed later in the subsection "Absorption with Chemical Reaction. Graphical Design Method for Dilute Systems The following notation for multicomponent absorption calculations has been adapted from Sherwood, Pigford, and Wilke (Mass Transfer, McGraw-Hill, New York 1975, p. 415) ... [Pg.1185]


See other pages where Complexes with chemical reaction is mentioned: [Pg.534]    [Pg.84]    [Pg.350]    [Pg.10]    [Pg.13]    [Pg.88]    [Pg.349]    [Pg.327]    [Pg.48]    [Pg.188]    [Pg.188]    [Pg.350]    [Pg.102]    [Pg.324]    [Pg.306]   
See also in sourсe #XX -- [ Pg.182 , Pg.183 , Pg.184 , Pg.185 ]




SEARCH



Chemical complexation

Chemical complexes

Chemical complexity

Chemical reactions complexity

Complexation, chemical reactions

Complexes chemical reaction

Reaction with chemical

© 2024 chempedia.info