Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexation emission spectroscopy

The analysis of phosphates and phosphonates is a considerably complex task due to the great variety of possible molecular structures. Phosphorus-containing anionics are nearly always available as mixtures dependent on the kind of synthesis carried out. For analytical separation the total amount of phosphorus in the molecule has to be ascertained. Thus, the organic and inorganic phosphorus is transformed to orthophosphoric acid by oxidation. The fusion of the substance is performed by the addition of 2 ml of concentrated sulfuric acid to — 100 mg of the substance. The black residue is then oxidized by a mixture of nitric acid and perchloric acid. The resulting orthophosphate can be determined at 8000 K by atom emission spectroscopy. The thermally excited phosphorus atoms emit a characteristic line at a wavelength of 178.23 nm. The extensity of the radiation is used for quantitative determination of the phosphorus content. [Pg.616]

Stabilisers are usually determined by a time-consuming extraction from the polymer, followed by an IR or UV spectrophotometric measurement on the extract. Most stabilisers are complex aromatic compounds which exhibit intense UV absorption and therefore should show luminescence in many cases. The fluorescence emission spectra of Irgafos 168 and its phosphate degradation product, recorded in hexane at an excitation wavelength of 270 nm, are not spectrally distinct. However, the fluorescence quantum yield of the phosphate greatly exceeds that of the phosphite and this difference may enable quantitation of the phosphate concentration [150]. The application of emission spectroscopy to additive analysis was illustrated for Nonox Cl (/V./V -di-/i-naphthyl-p-phcnylene-diamine) [149] with fluorescence ex/em peaks at 392/490 nm and phosphorescence ex/em at 382/516 nm. Parker and Barnes [151] have reported the use of fluorescence for the determination of V-phenyl-l-naphthylamine and N-phenyl-2-naphthylamine in extracted vulcanised rubber. While pine tar and other additives in the rubber seriously interfered with the absorption spectrophotometric method this was not the case with the fluoromet-ric method. [Pg.322]

Reactions of IrCL/I I2C) with 2-(/>-tolyl)pyridine(ptpy) and 3-methyl-2-phenylpyridine(mppy) gave [Ir(ptpy)2Cl]2 and [Ir(mppy)2Cl]2, respectively.323 Treatment with bpy afforded [Ir (ptpy)2-bpy]Cl and [Ir(mppy)2bpy]Cl. All complexes were characterized by UV-vis, emission spectroscopy, and cyclic voltammetry. [Pg.183]

Emission spectroscopy of sodium vis-a-vis uranium Emission spectroscopy is mainly based on sensitivity which is inversely proportional to the complexity of the atomic spectra. In actual practice, it has been observed that the spectra of alkali-metals, like K, Na, Li, Rb appear to be very simple and hence they may be studied conveniently without any difficulty. It is also pertinent to mention here that these spectra usually comprise of 13 to 14 adequately spaced lines having reasonably good sensitivity and possessing wavelengths. [Pg.360]

A. Kirsch-De Mesmaeker, G. Orellano, J. K. Barton, and N. J.Turro, Light-dependent interactions of ruthenium(II) polypyridyl complexes with DNA probed by emission spectroscopy, Photochem. Photobiol. 52,461 (1990). [Pg.106]

The photophysical properties of [Ru(TBP)(CO)(EtOH)], [Ru(TBP)(pyz)2], [Ru(TBP)(pyz)] (Fl2TBP = 5,10,15,20-tetra(3,5-tert-butyl-4-hydroxyphenyl)porphyrin) have been investigated by steady-state and time-resolved absorption and emission spectroscopies. The complexes are weakly luminescent, and the origins of this behavior is discussed.Transient Raman spectroscopic data have been reported for [Ru(TPP)(py)2], [Ru(TPP)(CO)(py), and [Ru(TPP)(pip)2] (pip = piperidine),and nanosecond time-resolved resonance Raman spectroscopy has been used to examine the CT excited states of [Ru(0EP)(py)2] and [Ru(TPP)(py)2]. " ... [Pg.652]

The B2O3 content of borax may be determined by extraction into HCl solution followed by complexation with mannitol and titration with dUute NaOH. The Na20 content of horax may he measured by titration of an aqueous solution with dUute HCl. Boron and sodium metals in the acid extract of horax may be analyzed by atomic absorption or emission spectroscopy after appropriate dUution of the extract. In the solid phase B2O3 and Na20 may he measured nondestructively by x-ray techniques. [Pg.116]

Steady-state and time-resolved emission spectroscopy was used to study the interaction of E. colt PNP with its specific inhibitors formycin B, FA, and A -l-methylformycin A. Complexation was found to induce tautomeric shifts <2000BBA1467>. Carbocyclic analogues of formycin A and B have been recently synthesized <2004T8233>. The synthesis utilized 417 as starting material which was converted into 418 via a multistage synthesis. The latter could be converted into the formycin analogue (Scheme 36) <2004TL8233>. [Pg.649]

Complexes of rhenium(bipyridine)(tricarbonyl)(picoline) units linked covalently to magnesium tetraphenylporphyrins via an amide bond between the bipyridine and one phenyl substituent of the porphyrin 19 exhibited no signs of electronic interaction between the Re(CO)3(bpy) nnits and the metalloporphyrin units in their gronnd states. However, emission spectroscopy revealed a solvent-dependent quenching of porphyrin emission upon irradiation into the long-wavelength absorption bands localized on the porphyrin. [Pg.199]

M. L. Griffiths, D. Svozil, P. J. Worsfold, S. Denham and E. H. Evans, Comparison of traditional and multivariate calibration techniques applied to complex matrices using inductively coupled plasma atomic emission spectroscopy, J. Anal. At. Spectrom., 15, 2000, 967-972. [Pg.242]

Analysis by atomic (or optical) emission spectroscopy is based on the study of radiation emitted by atoms in their excited state, ionised by the effect of high temperature. All elements can be measured by this technique, in contrast to conventional flames that only allow the analysis of a limited number of elements. Emission spectra, which are obtained in an electron rich environment, are more complex than in flame emission. Therefore, the optical part of the spectrometer has to be of very high quality to resolve interferences and matrix effects.-... [Pg.273]

The modern investigations of trace elements in coals were pioneered by Goldschmidt, who developed the technique of quantitative chemical analysis by optical emission spectroscopy and applied it to coal ash. In these earliest works, Goldschmidt (31) was concerned with the chemical combinations of the trace elements in coals. In addition to identifying trace elements in inorganic combinations with the minerals in coal, he postulated the presence of metal organic complexes and attributed the observed concentrations of vanadium, molybdenum, and nickel to the presence of such complexes in coal. [Pg.18]

Approximate contents of 14 minor and trace elements in oils produced from three coals by the catalytic hydrogenation process of Gulf Research and Development Co. were determined by emission spectroscopy. The results were compared with corresponding data for the original coals and the solid residues from the process. The contents of ash, sulfur, vanadium, lead, and copper are near or below the limits specified for an oil to be fired directly in a gas turbine while sodium and probably calcium are too high. Titanium appears to be somewhat enriched in the oils analyzed relative to other elements, suggesting its presence in organo-metallic complexes. [Pg.196]

High speed emission spectroscopy has been used to study free radicals and positive, negative, and multiple ions produced in explosions and flames. Many excited states would exist for many different species from coal subjected to high energy. Complex spectra would result. The combination of electronic-vibration-rotation transitions observable in emission spectroscopy... [Pg.725]

Many analytes listed in Table 1 have been measured spectrophotometri-cally in seawater for some time, including many metal ions and some gases, although spectrophotometry is the preferred method for only a minority. Some analytes, like alkanes, are spectrophotometrically silent, or do not form colored complexes with other reagents. Similarly, individual nuclides cannot be distinguished by classical spectrophotometry, and many of the other analytes, such as halogenated pesticides and metal alkyls, are more easily determined by other methods, such as gas chromatography with electron capture detection, or emission spectroscopy. Indeed, many of the analytes, such as zinc or copper, are present at trace levels and are not measurable by spectrophotometry. [Pg.56]

Only a very few polynuclear complexes containing more than two chromium(III) centers have been studied so far. However, magnetochemical and inelastic neutron scattering studies, heat capacity measurements, and emission spectroscopy have been reported for various tetranuclear species (40,142 151). Two review articles dealing with the spectroscopic and magnetic properties of chromium(III) oligomers have recently appeared (127, 128). [Pg.75]

Additional work by the Forster group, making use of transient emission spectroscopy, probed the rate of photoinduced electron transfer between metal centers within a novel trimeric complex [Os(II)(bpy)2(bpe)2 ] [Os(II) (bpy)2Cl]2 4+, where bpy is 2,2/-bipyridyl and bpe is fra s-l,2-bis-(4-pyridyl) ethylene. Transient emission experiments on the trimer, and on [Os(bpy)2(bpe)2]2+ in which the [Os(bpy)2Cl]+ quenching moieties are absent, reveal that the rate of photoinduced electron transfer (PET) across the bpe bridge is 1.3 0.1 x 108s-1. The electron transfer is believed to be from the peripheral Os(II)Cl metal centers to the [Os(bpy)2(bpe)2]2+ chro-mophore. Comparison to rate constants for reduction of monolayers at a Pt electrode reveals that the photoinduced process is significantly faster [39]. [Pg.113]

In summary, it has been demonstrated that complex formation between dyes and DNA may be conveniently monitored by absorption and emission spectroscopy and that these methods provide useful data for discussion of the binding strength and binding mode. [Pg.186]


See other pages where Complexation emission spectroscopy is mentioned: [Pg.1142]    [Pg.395]    [Pg.317]    [Pg.126]    [Pg.53]    [Pg.182]    [Pg.184]    [Pg.589]    [Pg.699]    [Pg.72]    [Pg.51]    [Pg.162]    [Pg.266]    [Pg.594]    [Pg.651]    [Pg.113]    [Pg.58]    [Pg.460]    [Pg.233]    [Pg.1090]    [Pg.308]    [Pg.309]    [Pg.461]    [Pg.579]    [Pg.126]    [Pg.263]    [Pg.262]    [Pg.13]    [Pg.172]    [Pg.176]    [Pg.303]   
See also in sourсe #XX -- [ Pg.315 ]




SEARCH



Emission spectroscopy)

© 2024 chempedia.info