Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Columns Data system

Work at the University of Manchester Institue of Science and Technology (UMIST) has resulted in several papers reporting efficiency data taken in a 0.6-m-diameter column. The systems methanol/water, isopropanoil/water, and toluene methylcyclohexane have been used. The results may be found in Lockett and Ahmed [Chem. Eng. Re.s. Des., 61, 110 (1983)], Korchinsky et al. [Trans. Chem. E., 72, 406 (1994)], and Korchinsky [ibid., 472]... [Pg.1384]

FIG. 14-74 HETP values for Max-Pak structured packing,. 35 kPa (5 psia), two column diameters. Cyclohexane/n-heptane system, total reflux. For 0.4.3 m (1.4 ft) column perforated pipe distributor, 400 streams/m2, 3.05 m (10 ft) bed height. For 1.2 m (4.0 ft) column tubed drip pan distributor, 100 streams/m ,. 3.7 m (12 ft) bed height. Smaller column data. University of Texas/Austin Larger column data. Fractionation Research, Inc. To convert (ft/s)(lb/ft ) to (m/s)(kg/m ) , multiply by 1.2199. (Couiiesy Jaeger Troducts, Inc., Housion, Texas.)... [Pg.1400]

Dionex Corporation - Manufacturers of liquid chromatography systems (IC and HPLC), chromatography software data systems, reversed-phase and ion-exchange columns, and accelerated solvent extraction systems... http //www.dionex.com. [Pg.440]

Figure 6.2 Schematic diagram showing the basic components of (a) SFE and (b) SFC instruments 1, carbon dioxide 2, high pressure pump 3, oven 4, exti action cell (SFE) or column (SFC) 5, collection vial (SFE) or data system (SEC). Figure 6.2 Schematic diagram showing the basic components of (a) SFE and (b) SFC instruments 1, carbon dioxide 2, high pressure pump 3, oven 4, exti action cell (SFE) or column (SFC) 5, collection vial (SFE) or data system (SEC).
HETP Use HETP = 18 in. based on on-site column data and manufacturer s confirmation that for in. Pall rings in this system, the 18 in. HETP should perform satisfactorily. Note For each design verify expected HETP through the manufacturer. [Pg.304]

GC column bleed is a frequently encountered contaminant of mass spectra when high column temperatures are employed. Modern data systems offer the best way to eliminate this type of contamination by subtracting a spectrum showing column bleed from all other spectra in the GC/MS run. [Pg.56]

Ions at m/z 55, 60, 214 and 236 are observed but do some or all of these arise from the background and are present throughout the analysis, or are they present in only a few scans, i.e. are they from a component with insufficient overall intensity to appear as a discrete peak in the TIC trace An examination of reconstructed ion chromatograms (RICs) from these ions generated by the data system may enable the analyst to resolve this dilemma. The TIC shows the variation, with time, of the total number of ions being detected by the mass spectrometer, while an RIC shows the variation, with time, of a single ion with a chosen m/z value. The RICs for the four ions noted above are shown in Figure 3.15. These ions have similar profiles and show a reduction in intensity as analytes elute from the column. The reduction in intensity is a suppression effect. [Pg.76]

With the development of HPLC, a new dimension was added to the tools available for the study of natural products. HPLC is ideally suited to the analysis of non-volatile, sensitive compounds frequently found in biological systems. Unlike other available separation techniques such as TLC and electrophoresis, HPLC methods provide both qualitative and quantitative data and can be easily automated. The basis for the HPLC method for the PSP toxins was established in the late 1970 s when Buckley et al. (2) reported the post-column derivatization of the PSP toxins based on an alkaline oxidation reaction described by Bates and Rapoport (3). Based on this foundation, a series of investigations were conducted to develop a rapid, efficient HPLC method to detect the multiple toxins involved in PSP. Originally, a variety of silica-based, bonded stationary phases were utilized with a low-pressure post-column reaction system (PCRS) (4,5), Later, with improvements in toxin separation mechanisms and the utilization of a high efficiency PCRS, a... [Pg.66]

The basic SFC system comprises a mobile phase delivery system, an injector (as in HPLC), oven, restrictor, detector and a control/data system. In SFC the mobile phase is supplied to the LC pump where the pressure of the fluid is raised above the critical pressure. Pressure control is the primary variable in SFC. In SFC temperature is also important, but more as a supplementary parameter to pressure programming. Samples are introduced into the fluid stream via an LC injection valve and separated on a column placed in a GC oven thermostatted above the critical temperature of the mobile phase. A postcolumn restrictor ensures that the fluid is maintained above its critical pressure throughout the separation process. Detectors positioned either before or after the postcolumn restrictor monitor analytes eluting from the column. The key feature differentiating SFC from conventional techniques is the use of the significantly elevated pressure at the column outlet. This allows not only to use mobile phases that are either impossible or impractical under conventional LC and GC conditions but also to use more ordinary... [Pg.206]

Pyrolysis-Gas Chromatography-Mass Spectrometry. In the experiments, about 2 mg of sample was pyrolyzed at 900°C in flowing helium using a Chemical Data System (CDS) Platinum Coil Pyrolysis Probe controlled by a CDS Model 122 Pyroprobe in normal mode. Products were separated on a 12 meter fused capillary column with a cross-linked poly (dimethylsilicone) stationary phase. The GC column was temperature programmed from -50 to 300°C. Individual compounds were identified with a Hewlett Packard (HP) Model 5995C low resolution quadruple GC/MS System. Data acquisition and reduction were performed on the HP 100 E-series computer running revision E RTE-6/VM software. [Pg.547]

A modern gas chromatograph, whether configured for packed or capillary column use, consists of several basic components. All of them must be properly chosen and operated for successful analysis. These are pneumatics and gas-handling systems, an injection device, an inlet, a column oven and column, a detector and a data system. Since the inception of GC in the 1950s, instrumentation has evolved significantly as new techniques and technologies were developed. This section provides an overview of the major components of a modern gas chromatograph, with details about how to choose components based on analytical needs, and applications. [Pg.458]

The lncos-50 is a relatively low-cost benchtop instrument as opposed to the research grade instruments discussed earlier. The gas chromatography-mass spectrometer transfer lines allow it to be used with either the Hewlett Packard 5890 or the Varian 3400 gas chromatographs. The Incos 50 provides data system control of the gas chromatography and accessories such as autosampler or liquid sample concentration. It can be used with capillary, wide-bore or packed columns. It performs electron ionization or chemical ionization with positive or negative detection. It also accepts desorption or other solids controls. [Pg.76]

Finally, a detection system is required at the opposite end of the column that will detect when a substance other than the carrier gas elutes. This detector can consist of any one of a number of different designs, but the purpose is to generate the electronic signal responsible for the chromatogram displayed on the data system screen and from which the qualitative and quantitative information is obtained. [Pg.339]

As shown in the Level column of Figure 10, the various injected volumes can be designated as individual component calibration levels. By doing this, experiments 10-27 can also be used to help validate multilevel, multi-replicate calibration algorithms on a chromatographic data system. [Pg.330]


See other pages where Columns Data system is mentioned: [Pg.74]    [Pg.1808]    [Pg.104]    [Pg.101]    [Pg.810]    [Pg.242]    [Pg.827]    [Pg.1037]    [Pg.279]    [Pg.794]    [Pg.231]    [Pg.233]    [Pg.459]    [Pg.131]    [Pg.459]    [Pg.42]    [Pg.72]    [Pg.78]    [Pg.167]    [Pg.182]    [Pg.182]    [Pg.496]    [Pg.497]    [Pg.339]    [Pg.367]    [Pg.72]    [Pg.324]    [Pg.296]    [Pg.430]    [Pg.156]    [Pg.199]    [Pg.201]    [Pg.11]    [Pg.23]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Column system

Data column

Data systems

© 2024 chempedia.info