Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unique column

Efficiently joining tables requires careful consideration of primary key and foreign key columns, uniqueness, and indexing. While it is not necessary to use a primary key and its related foreign key column when joining tables, that is a very common, useful, and efficient way to join tables. [Pg.17]

The fir.-fit line of the file (see Figure 2-110) - the HEADER record - hold.s the moleculc. s classification string (columns 11-50), the deposition date (the date when the data were received by the PDB) in columns 51-59, and the PDB (Dcode for the molecule, which is unique within the Protein Data Bank, in columns 63-66. The second line - the TITLE record - contains the title of the experiment or the analysis that is represented in the entry. The subsequent records contain a more detailed description of the macromolecular content of the entiy (COMPND), the biological and/or chemical source ofeach biological molecule in the entiy (SOURCE), a set ofkeywords relevant to the entiy (KEYWDS). information about the experiment (EXPDTA), a list of people responsible for the contents of this entiy (.AUTHOR), a history of modifications made to this entiy since its release (REVDAT), and finally the primaiy literature citation that describes the experiment which resulted in the deposited dataset ()RNL). [Pg.115]

The Diacel columns can be used for the separation of a wide variety of compounds, including aromatic hydrocarbons having hydroxyl groups, carbonyls and sulfoxides, barbiturates, and P-blockers (35,36). There are presendy nine different cellulose derivative-based columns produced by Diacel Chemical Industries. The different columns each demonstrate unique selectivities so that a choice of stationary phases is available to accomplish a separation. [Pg.100]

Once the particle-reactive species have been scavenged, subsequent packaging and/or aggregation can result in the flux of particles and particle-reactive species from the water column. Thorium provides a unique way to study the environmental pathways and the biogeochemical processes that affect particle-reactive species. The four useful thorium isotopes are Th = A x yx), °Th... [Pg.46]

Although it is often possible to predict the effect of the solvent on retention, due to the unique interactive character of both the solvents and the enantiomers, it is virtually impossible to predict the subtle differences that control the separation ratio from present knowledge. Nevertheless, some accurate retention data, taken at different solvent compositions, can allow the retention and separation ratios to be calculated over a wide range of concentrations using the procedure outlined above. From such data the phase system and the column can be optimized to provide the separation in the minimum time, a subject that will be discussed later in the treatment of chromatography theory. [Pg.118]

It is seen that the chromatographer can arrive at the minimum (aA/e) value for a pair of solutes that the column can resolve directly, from either the resolution, as defined by Giddings, or from a simple function of the number of effective plates. However, again it must be emphasized that this will not be a unique value for any column, as it will also depend on the (k ) of the eluted solute. [Pg.190]

Unfortunately, any equation that does provide a good fit to a series of experimentally determined data sets, and meets the requirement that all constants were positive and real, would still not uniquely identify the correct expression for peak dispersion. After a satisfactory fit of the experimental data to a particular equation is obtained, the constants, (A), (B), (C) etc. must then be replaced by the explicit expressions derived from the respective theory. These expressions will contain constants that define certain physical properties of the solute, solvent and stationary phase. Consequently, if the pertinent physical properties of solute, solvent and stationary phase are varied in a systematic manner to change the magnitude of the constants (A), (B), (C) etc., the changes as predicted by the equation under examination must then be compared with those obtained experimentally. The equation that satisfies both requirements can then be considered to be the true equation that describes band dispersion in a packed column. [Pg.316]

The results obtained were probably as accurate and precise as any available and, consequently, were unique at the time of publication and probably unique even today. Data were reported for different columns, different mobile phases, packings of different particle size and for different solutes. Consequently, such data can be used in many ways to evaluate existing equations and also any developed in the future. For this reason, the full data are reproduced in Tables 1 and 2 in Appendix 1. It should be noted that in the curve fitting procedure, the true linear velocity calculated using the retention time of the totally excluded solute was employed. An example of an HETP curve obtained for benzyl acetate using 4.86%v/v ethyl acetate in hexane as the mobile phase and fitted to the Van Deemter equation is shown in Figure 1. [Pg.319]

The apparatus employed for any given analysis will have operating specifications that are unique to the particular instrument that is selected or that is available. These specifications have been determined by the design and method of manufacture of the instrument and can differ significantly from one chromatograph to another. Some will control and limit the ultimate performance achieved by any column with which the instrument is used. However, it is likely that, as a result of careful design by the manufacturer, the important instrument characteristics affecting column... [Pg.359]

It is seen that there will be a unique value for (dp), the optimum particle diameter, (dp(opt)), that will meet the equality defined in equation (14) and allow the minimum HETP to be realized when operating at a maximum column inlet pressure... [Pg.371]

The analytical capability of a SEC column is sometimes judged by the peak capacity, which is the number of unique species that can be resolved on any given SEC column. This number will increase with decreased particle size, increased column length, and increased pore volume. Because small particlesized medium generally has a lower pore volume and a shorter column length, peak capacities of ca. 13 for fully resolved peaks can be expected for high-resolution modern media as well as traditional media, (see Eig. 2.5). It was found that SEC columns differ widely in pore volume, which affects the effective peak capacity (Hagel, 1992). [Pg.35]

The INdEX column series was designed for use in process development and small-scale production. This column series uses a unique hydraulic adaptor for... [Pg.57]

Figure 13.22 shows the resolution of the surfactants Tween 80 and SPAN. The high resolution obtained will even allow the individual unreacted ethylene oxide oligomers to be monitored. Figure 13.23 details the resolution of many species in both new and aged cooking oil. Perhaps the most unique high resolution low molecular weight SEC separation we have been able to obtain is shown in Fig. 13.24. Using 1,2,4-trichlorobenzene as the mobile phase at 145°C with a six column 500-A set in series, we were able to resolve Cg, C, Cy, Cg, C9, Cio, and so on hydrocarbons, a separation by size of only a methylene group. Individual ethylene groups were at least partially resolved out to Cjg. This type of separation should be ideal for complex wax analysis. Figure 13.22 shows the resolution of the surfactants Tween 80 and SPAN. The high resolution obtained will even allow the individual unreacted ethylene oxide oligomers to be monitored. Figure 13.23 details the resolution of many species in both new and aged cooking oil. Perhaps the most unique high resolution low molecular weight SEC separation we have been able to obtain is shown in Fig. 13.24. Using 1,2,4-trichlorobenzene as the mobile phase at 145°C with a six column 500-A set in series, we were able to resolve Cg, C, Cy, Cg, C9, Cio, and so on hydrocarbons, a separation by size of only a methylene group. Individual ethylene groups were at least partially resolved out to Cjg. This type of separation should be ideal for complex wax analysis.
A GPC column is like an alive individual every column is unique and is getting older with his own curriculum. Therefore the question arises, when does a column need to be discarded ... [Pg.434]

Although the OTHdC has several unique applications in polymer analysis, this technique has several limitations. First, it requires the instrumentation of capillary HPLC, especially the injector and detector, which is not as popular as packed column chromatography at this time. Second, as discussed previously, the separation range of a uniform capillary column is rather narrow. Third, it is difficult to couple capillary columns with different sizes together as SEC columns. [Pg.601]

The Ga analogue was prepared similarly. The planar anions are embedded between columns of condensed icosahedra (Cs6K6/2) which in turn are centred by the remaining unique monatomic Sb anion. [Pg.256]

For your guidance. Table 0.2 will help you convert between the results of some molecular modelling packages and SI. The first column gives the physical quantity. The second column shows the usual symbol. The third column gives X, the collection of physical constants that correspond to each quantity. This collection is not unique, but the value given in the fourth column is unique. [Pg.23]

Each glycopeptide CSP has unique selectivity as well as complementary characteristics, and a considerable number of racemates have been resolved on all three of them. Interestingly, most of the resolved enantiomers have the same retention order on these macrocyclic CSPs. When they are mixed or coupled with each other, the selectivity on one CSP will not be canceled by another. Even if some compounds may not have the same retention order, the complementary effects will result in an identifiable selectivity. Therefore, the coupled chiral columns can be used as a screening tool and save chromatographers substantial time in method development. [Pg.40]

Another important issue that must be considered in the development of CSPs for preparative separations is the solubility of enantiomers in the mobile phase. For example, the mixtures of hexane and polar solvents such as tetrahydrofuran, ethyl acetate, and 2-propanol typically used for normal-phase HPLC may not dissolve enough compound to overload the column. Since the selectivity of chiral recognition is strongly mobile phase-dependent, the development and optimization of the selector must be carried out in such a solvent that is well suited for the analytes. In contrast to analytical separations, separations on process scale do not require selectivity for a broad variety of racemates, since the unit often separates only a unique mixture of enantiomers. Therefore, a very high key-and-lock type selectivity, well known in the recognition of biosystems, would be most advantageous for the separation of a specific pair of enantiomers in large-scale production. [Pg.61]

Note that since for each state E , d> assigns a unique successor state Eg, each column of the matrix consists of all zeroes except for a single 1 each row, on the other hand, is under no such constraint and can therefore have any number of I s. [Pg.226]


See other pages where Unique column is mentioned: [Pg.741]    [Pg.741]    [Pg.17]    [Pg.61]    [Pg.74]    [Pg.62]    [Pg.62]    [Pg.63]    [Pg.181]    [Pg.200]    [Pg.336]    [Pg.107]    [Pg.378]    [Pg.1267]    [Pg.17]    [Pg.35]    [Pg.100]    [Pg.191]    [Pg.119]    [Pg.153]    [Pg.76]    [Pg.89]    [Pg.154]    [Pg.568]    [Pg.1205]    [Pg.311]    [Pg.84]    [Pg.94]    [Pg.105]    [Pg.390]    [Pg.30]    [Pg.53]   
See also in sourсe #XX -- [ Pg.14 , Pg.18 ]




SEARCH



UniQuant

Unique

Uniqueness

© 2024 chempedia.info