Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids dispersion types

Another family of polyols is the filled polyols.llb There are several types, but die polymer polyols are die most common. These are standard polyether polyols in which have been polymerized styrene, acrylonitrile, or a copolymer thereof. The resultant colloidal dispersions of micrometer-size particles are phase stable and usually contain 20-50% solids by weight. The primary application for these polyols is in dexible foams where the polymer filler serves to increase foam hardness and load-bearing capacity. Other filled polyol types diat have been developed and used commercially (mainly to compete with die preeminent polymer polyols) include the polyurea-based PEID (polyhamstoff dispersion) polyols and the urethane-based PIPA (poly isocyanate polyaddition) polyols. [Pg.213]

Partially hydrolyzed polyacrylamides, carboxymethylcellulose, polysaccharides, and acrylamido methylpropane sulfonate have been screened to investigate the performance of aluminum citrate as a chelate-type crosslinker. An overview of the performance of 18 different polymers has been presented in the literature [1646]. The performance of the colloidal dispersion gels depends strongly on the type and the quality of the polymer used. The gels were mixed with the polymers at two polymer concentrations, at three polymer-to-aluminum ratios, and in different concentrations of potassium chloride. The gels were quantitatively tested 1,7, 14, and 28 days after preparation. [Pg.116]

Macromolecules have also been specifically designed and synthesized for use as emulsifiers for lipophilic materials and as stabilizers in the colloidal dispersion of lipophilic, hydrocarbon polymers in C02. We have demonstrated the amphiphilicity of fluorinated acrylate homopolymers, such as PFOA, which contain a lipophilic, acrylate like backbone and C02-philic, fluorinated side chains (see Fig. 3) [103]. It has been demonstrated that a homopolymer which physically adsorbs to the surface of a polymer colloid prevents agglomeration by the presence of loops and tails (see Fig. 4) [113]. The synthesis of this type of... [Pg.121]

Experiments of this type in any olefin, even one such as cyclohexene which is exceedingly difficult to hydrosilate, produced optically clear solutions with no detectable precipitation of Pt(0). Such solutions are usually yellow and stable indefinitely at room temperature. If they are warmed to about 80°-100°C they darken, turn brown, and become colloidal dispersions of Pt(0). Platinum in the brown dispersions precipitates as a fine powder, sometimes in a few days at room temperature, sometimes in a few weeks. Catalytic activity was obviously reduced or completely lost by such solutions after they turned brown. A clear solution... [Pg.410]

Toshima et al. obtained colloidal dispersions of platinum by hydrogen- and photo-reduction of chloroplatinic acid in an aqueous solution in the presence of various types of surfactants such as dodecyltrimethylammonium (DTAC) and sodium dodecylsulfate (SDS) [60]. The nanoparticles produced by hydrogen reduction are bigger and more widely distributed in size than those resulting from the photo-irradiation method. Hydrogenation of vinylacetate was chosen as a catalytic reaction to test the activity of these surfactant-stabilized colloids. The reaction was performed in water under atmospheric pressure of hydrogen at 30 °C. The photo-reduced colloidal platinum catalysts proved to be best in terms of activity, a fact explained by their higher surface area as a consequence of their smaller size. [Pg.227]

With these results in hand, we have next introduced new types of Lewis acids, e.g scandium tris(-dodecyl sulfate) (4a) and scandium trisdodecanesul-fonate (5a) (Chart 1).[1S1 These Lewis acid-surfactant-combined catalysts (LASCs) were found to form stable colloidal dispersions with organic substrates in water and to catalyze efficiently aldol reactions of aldehydes with very water-labile silyl enol ethers. [Pg.7]

K Manabe, S. Kobayashi, Mannich-Type Readions of Aldehydes, Amines, and Ketones in a Colloidal Dispersion System Created by a Bronsted Acid-Surfadant-Combined Catalyst in Water Org. Lett. 1999, 1, 1965-1967. [Pg.12]

In the case of 7-AI2O3, the only t/>0/pH measurements in which a ApK is reported are in (18) and (14) (see Figure 6) the value observed is ApK= 4.2, assuming that Ns = 8 x 1014 cm-2. Again, the type of electrolyte did not affect this result. The pHpzc found with electrolyte/insulator/Si structures was 8, which is close to the value of 8.4 usually reported for colloidal dispersions of the same material. Thus, for 7-AI2O3, the following results are obtained ... [Pg.91]

Characteristic microstructural properties of TiOj membranes produced in this way are given in Table 2.5. Mean pore diameters of 4-5 nm were obtained after heat treatment at T < 500°C. The pore size distribution was narrow in this case and the particle size in the membrane layer was about 5 nm. Anderson et al. (1988) discuss sol/gel chemistry and the formation of nonsupported titania membranes using the colloidal suspension synthesis of the type mentioned above. The particle size in the colloidal dispersion increased with the H/Ti ratio from 80 nm (H /Ti = 0.4, minimum gelling volume) to 140 nm (H /Ti " — 1.0). The membranes, thus prepared, had microstructural characteristics similar to those reported in Table 2.5 and are composed mainly of 20 nm anatase particles. Considerable problems were encountered in membrane synthesis with the polymeric gel route. Anderson et al. (1988) report that clear polymeric sols without precipitates could be produced using initial water concentrations up to 16 mole per mole Ti. Transparent gels could be obtained only when the molar ratio of H2O to Ti is < 4. Gels with up to 12 wt.% T1O2 could be produced provided a low pH is used (H /Ti + < 0.025). [Pg.36]

It is operationally difficult to distinguish between dissolved and colloidally dispersed substances. For example, colloidal metal-ion precipitates occasionally have particle sizes smaller than 100 A, sufficiently small to pass through a membrane filter, and organic substances can exist as a stable colloidal suspension. Information on the types of species encountered under different chemical conditions (type of complexes, their stabilities, rate of formation) is a prerequisite to better understanding of the transformation in properties of toxic chemicals in a water body. [Pg.284]

In the specific case of wastewater generated from the condenser water bleedoff in the production of elemental phosphorus from phosphate rock in an electric furnace, Yapijakis [33] reported that the flow varies from 10 to 100 gpm (2.3-23 m /hour), depending on the particular installation. The most important contaminants in this waste are elemental phosphoms, which is colloidally dispersed and may ignite if allowed to dry out, and fluorine, which is also present in the furnace gases. The general characteristics of this type of wastewater (if no soda ash or ammonia were added to the condenser water) are given in Table 9. [Pg.416]

Emulsion polymerization refers to a unique process employed for some radical chain polymerizations. It involves the polymerization of monomers in the form of emulsions (i.e., colloidal dispersions). The process bears a superficial resemblance to suspension polymerization (Sec. 3-13c) but is quite different in mechanism and reaction characteristics. Emulsion polymerization differs from suspension polymerization in the type and smaller size of the particles in which polymerization occurs, in the kind of initiator employed, and in the dependence of polymer molecular weight on reaction parameters. [Pg.350]

The difference between macroscopic and microscopic objects is clear from everyday experience. For example, a glass marble will sink rapidly in water however, if we grind it into snb-micron-sized particles, these will float or disperse freely in water, prodncing a visibly clondy soln-tion , which can remain stable for honrs or days. In this process we have, in fact, prodnced a colloidal dispersion or solution. This dispersion of one (finely divided or microscopic) phase in another is quite different from the molecular mixtures or true solutions formed when we dissolve ethanol or common salt in water. Microscopic particles of one phase dispersed in another are generally called colloidal solutions or dispersions. Both nature and industry have found many uses for this type of solution. We will see later that the properties of colloidal solu-... [Pg.1]

A colloid is also called a colloidal dispersion. A colloid dispersion consists of two components similar to a solution. The particles themselves are the dispersed phase and are analogous to the solute in a solution. The dispersing medium is similar to the solvent. Some examples of different types of colloids are summarized in Table 11.5. [Pg.137]

The London force is also often called the dispersion force. The word dispersion here has nothing to do with the role of the London force in colloidal dispersions, but is the result of the role this type of interaction force plays in the dispersion of light in the visible and ultraviolet wavelengths. [Pg.464]

As manufactured, PTFE is of two principal types dispersion polymer, made by suspension polymerization followed by coagulation, and granular PTFE, polymerized and generally comminuted to a desirable particle size. Some details are given by Sperati. We have observed cast films of an aqueous colloidal dispersion and see that it consists of peanut-shaped particles, approximately 0.25 pm in size, which are composed of even finer particles. Electron micrographs of as-polymerized granular particles show three structures bands arranged in parallel, striated humps, and fibrils, some of which have the shish-kebab structure."... [Pg.8]

In general, A and B subchains in an AB- or an ABA-type block copolymer have different solubilities or affinities for a solvent or other polymers. Therefore, it is expected that a block copolymer is surface-active when dissolved in a suitable solvent or mixed in polymer melts108. This property of block copolymers is now utilized to stabilize or flocculate colloidal dispersions. Blocks A, which are insoluble in a given solvent, are anchored in an insoluble polymer particle, and blocks B, which are soluble in the solvent, form a surface layer around the particle. [Pg.53]

Emulsions are colloidal dispersions of liquid droplets in another liquid phase, sometimes stabilized by surface active agents. Emulsions thus consist of a discontinuous phase, dispersed in a continuous phase. The most common types of emulsions are water-in-oil (W/O) in which oil is the continuous phase, and oil-in-water (OAV) in which water forms the continuous phase. However, this traditional definition of an emulsion is too narrow to include most food emulsions. For example, in foods the dispersed phase may be partially solidified, as in dairy products or the continuous phase may contain crystalline material, as in ice cream. It may also be a gel, as in several desserts. In addition to this, air bubbles may have been incorporated to produce the desired texture. [Pg.151]

Statistical mechanics was originally formulated to describe the properties of systems of identical particles such as atoms or small molecules. However, many materials of industrial and commercial importance do not fit neatly into this framework. For example, the particles in a colloidal suspension are never strictly identical to one another, but have a range of radii (and possibly surface charges, shapes, etc.). This dependence of the particle properties on one or more continuous parameters is known as polydispersity. One can regard a polydisperse fluid as a mixture of an infinite number of distinct particle species. If we label each species according to the value of its polydisperse attribute, a, the state of a polydisperse system entails specification of a density distribution p(a), rather than a finite number of density variables. It is usual to identify two distinct types of polydispersity variable and fixed. Variable polydispersity pertains to systems such as ionic micelles or oil-water emulsions, where the degree of polydispersity (as measured by the form of p(a)) can change under the influence of external factors. A more common situation is fixed polydispersity, appropriate for the description of systems such as colloidal dispersions, liquid crystals, and polymers. Here the form of p(cr) is determined by the synthesis of the fluid. [Pg.49]

Sols and emulsions are by far the most important types of colloidal dispersion. The term sol is used to distinguish colloidal suspensions from macroscopic suspensions there is, of course, no sharp line of demarcation. When the dispersion medium is aqueous, the term hydrosol is usually used. If the dispersed phase is polymeric in nature, the dispersion is called a latex (pi. latices or latexes). [Pg.4]

Alkaline-earth metals. Of these metals, Ca, Sr, and Ba, only calcium is produced commercially in appreciable quantities. These three metals are more difficult to produce than the alkali metals since the chlorides of the alkaline-earth metals melt at relatively high temperatures. Furthermore, when these metals are liberated at the cathode, they tend to become colloidally dispersed throughout the molten electrolyte. Accordingly, it is necessary to design the electrolytic cells in such manner to permit the immediate collection of the elemental metal. The type of cell used in the production of calcium serves as a suitable illustration. Molten calcium chloride is placed in a cylindrical vessel around... [Pg.523]

Emulsions are colloidal dispersions in which a liquid is dispersed in a continuous liquid phase of different composition. The dispersed phase is sometimes referred to as the internal (disperse) phase and the continuous phase as the external phase. Practical emulsions may well contain droplets that exceed the classical size range limits given above, sometimes ranging upwards to tens or hundreds of micrometres. In most emulsions, one of the liquids is aqueous while the other is hydrocarbon and referred to as oil. Two types of emulsion are readily distinguished in principle, depending upon which kind of liquid forms the continuous phase (Figure 1.1) ... [Pg.4]

This book provides an introduction to the colloid and interface science of three of the most common types of colloidal dispersion emulsions, foams, and suspensions. The initial emphasis covers basic concepts important to the understanding of most kinds of colloidal dispersions, not just emulsions, foams, and suspensions, and is aimed at providing the necessary framework for understanding the applications. The treatment is integrated for each major physical property class the principles of colloid and interface science common to each dispersion type are presented first, followed as needed by separate treatments of features unique to emulsions, foams, or suspensions. The second half of the book provides examples of the applications of colloid science, again in the context of emulsions, foams, and suspensions, and includes attention to practical processes and problems in various industrial settings. [Pg.462]


See other pages where Colloids dispersion types is mentioned: [Pg.133]    [Pg.426]    [Pg.295]    [Pg.150]    [Pg.51]    [Pg.348]    [Pg.247]    [Pg.508]    [Pg.49]    [Pg.213]    [Pg.84]    [Pg.432]    [Pg.49]    [Pg.2]    [Pg.15]    [Pg.100]    [Pg.15]    [Pg.424]    [Pg.106]    [Pg.161]    [Pg.499]    [Pg.4]    [Pg.2]    [Pg.3]    [Pg.210]   
See also in sourсe #XX -- [ Pg.373 ]




SEARCH



Colloidal types

Colloids, types

Dispersants types

© 2024 chempedia.info