Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coherent anti-Stokes Raman scattering spectroscopy

3 Coherent anti-Stokes Raman scattering spectroscopy [Pg.367]

Coherent anti-Stokes Raman scatttering, or CARS as it is usually known, depends on the general phenomenon of wave mixing, as occurs, for example, in a frequency doubling crystal (see Section 9.1.6). In that case three-wave mixing occurs involving two incident waves of wavenumber v and the outgoing wave of wavenumber 2v. [Pg.367]

In CARS, radiation from two lasers of wavenumbers Vj and V2, where Vj V2, fall on the sample. As a result of four-w ve mixing, radiation of wavenumber V3 is produced where [Pg.367]

The wave mixing is much more efficient when (vj — V2) = v, where is the wavenumber of a Raman-active vibrational or rotational transition of the sample. [Pg.367]

The scattered radiation V3 is to high wavenumber of Vj (i.e. on the anti-Stokes side) and is coherent, unlike spontaneous Raman scattering hence the name CARS. As a consequence of the coherence of the scattering and the very high conversion efficiency to V3, the CARS radiation forms a collimated, laser-like beam. [Pg.367]


Kamga, F. M., and Sceats, M. G. 1980. Pulse-sequenced coherent anti-Stokes Raman scattering spectroscopy A method for suppression of the nonresonant background. Opt. Lett. 5(3) 126-28. [Pg.194]

Lim, S. H., Caster, A. G., and Leone, S. R. 2005. Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy. Phys. Rev. A 72(4) 041803. [Pg.194]

Ikeda K, Uosaki K (2009) Coherent phonon dynamics in single-walled carbon nanotubes studied by time-frequency two-dimensional coherent anti-stokes Raman scattering spectroscopy. Nano Lett 9 1378... [Pg.116]

Depending on the relative phase difference between these temis, one may observe various experimental spectra, as illustrated in figure Bl.5.14. This type of behaviour, while potentially a source of confiision, is familiar for other types of nonlinear spectroscopy, such as CARS (coherent anti-Stokes Raman scattering) [30. 31] and can be readily incorporated mto modelling of measured spectral features. [Pg.1295]

In order to realize molecular-vibration spectroscopy, coherent anti-Stokes Raman scattering (CARS) spectroscopy is employed, which is one of the most widely used nonlinear Raman spectroscopes (Shen 1984). CARS spectroscopy uses three incident fields including a pump field (< i), a Stokes field (0)2, 0 2 < 1) and a probe field (<0/ = <0i), and induces a nonlinear polarization at the frequency of <03 = 2<0i - <02 which is given in a scalar form by... [Pg.252]

Before melting and for some time after only the band at 625 cm of the AA [C4CiIm]+ cation was observed in the 600-630 cm i region. Gradually 603 cm i band due to the GA conformer became stronger. After about 10 min the AA/GA intensity ratio became constant. The interpretation [50] is that the rotational isomers do not interconvert momentarily at the molecular level. Most probably it involves a conversion of a larger local structure as a whole. The existence of such local structures of different rotamers has been found by optical heterodyne-detected Raman-induced Kerr-effect spectroscopy (OHD-RIKES) [82], Coherent anti-Stokes Raman scattering (CARS) [83],... [Pg.334]

In exemplarily flame measurements conducted at the LTT-Erlangen (Will et al., 1996), flame temperatures were determined by emission spectroscopy or coherent anti-Stokes Raman scattering (CARS) thermometry depending on the maximum soot concentration. Typical temperatures are in the range of 1800 K in the middle of the flames and up to 2100 K in the outer regions where the reactions take place. A typical measurement setup for two-dimensional LII investigations is shown in Figure 10. [Pg.236]

Here, E is the strength of the applied electric field (laser beam), a the polarizability and / and y the first and second hyper-polarizabilities, respectively. In the case of conventional Raman spectroscopy with CW lasers (E, 104 V cm-1), the contributions of the / and y terms to P are insignificant since a fi y. Their contributions become significant, however, when the sample is irradiated with extremely strong laser pulses ( 109 V cm-1) created by Q-switched ruby or Nd-YAG lasers (10-100 MW peak power). These giant pulses lead to novel spectroscopic phenomena such as the hyper-Raman effect, stimulated Raman effect, inverse Raman effect, coherent anti-Stokes Raman scattering (CARS), and photoacoustic Raman spectroscopy (PARS). Figure 3-40 shows transition schemes involved in each type of nonlinear Raman spectroscopy. (See Refs. 104-110.)... [Pg.194]

In this chapter we will first discuss coherent anti-Stokes Raman scattering (CARS) of simple liquids and binary mixtures for the determination of vibrational dephasing and correlation times. The time constants represent detailed information on the intermolecular interactions in the liquid phase. In the second section we consider strongly associated liquids and summarize the results of time-resolved IR spectroscopy (see, e.g., Ref. 17) on the dynamics of monomeric and associated alcohols as well as isotopic water mixtures. [Pg.16]

The methods of nonlinear Raman spectroscopy, i. e. spontaneous hyper Raman scattering (based on the hyperpolarizability) and coherent nonlinear Raman scattering (based on the third-order-nonlinear susceptibilities) are discussed in detail in Sec. 3.6.1. In Sec. 3.6.2 the instrumentation needed for these types of nonlinear spectroscopy is described. In this section we present some selected, typical examples of hyper Raman scattering (Sec. 6.1.4.1), coherent anti-Stokes Raman. scattering (Sec. 6.1.4.2), stimulated Raman gain and inverse Raman spectroscopy (Sec. 6.1.4.3), photoacoustic Raman spectroscopy (Sec. 6.1.4.4) and ionization detected stimulated Raman spectroscopy (Sec. 6.1.4.5). [Pg.498]

Time resolved coherent anti-Stokes Raman spectroscopy of condensed matter has been recently extended to the femtosecond domain allowing direct and detailed studies of the fast relaxation processes of molecular vibrations in liquids. The vibrational phase relaxation (dephasing) is a fundamental physical process of molecular dynamics and has attracted considerable attention. Both experimental and theoretical studies have been performed to understand microscopic processes of vibrational dephasing. Developments in ultrafast coherent spectroscopy enables one now to obtain direct time-domain information on molecular vibrational dynamics. Femtosecond time-resolved coherent anti-Stokes Raman scattering measuring systems have been constructed (see Sec. 3.6.2.2.3) with an overall time resolution of less than 100 fs (10 s). Pioneering work has been per-... [Pg.505]

Nonlinear vibrational spectroscopy provides accessibility to a range of vibrational information that is hardly obtainable from conventional linear spectroscopy. Recent progress in the pulsed laser technology has made the nonlinear Raman effect a widely applicable analytical method. In this chapter, two types of nonlinear Raman techniques, hyper-Raman scattering (HRS) spectroscopy and time-frequency two-dimensional broadband coherent anti-Stokes Raman scattering (2D-CARS) spectroscopy, are applied for characterizing carbon nanomaterials. The former is used as an alternative for IR spectroscopy. The latter is useful for studying dynamics of nanomaterials. [Pg.99]

Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Application of tip-enhanced microscopy for nonlinear Raman spectroscopy. Appl Phys Lett 84 1768 Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging. Phys Rev Lett 92 220801 Tanaka S, Maeda Y, Cai L, Tabata H, Kawai T (2001) Application of tip-enhanced microscopy for nonlinear Raman spectroscopy. Jpn J Appl Phys 40 4217 Watanabe H, Ishida Y, Hayazawa N, Inouye Y, Kawata S (2004) Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys Rev B 69 155418 Yano T, Verma P, Saito Y, Ichimura T, Kawata S (2009) Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nature Photon 3 473 Yano T, Inouye Y, Kawata S (2006) Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Lett 6 1269 Downes A, Salter D, Elfick A (2006) Heating effects in tip-enhanced optical microscopy. Opt Exp 14 5216... [Pg.475]


See other pages where Coherent anti-Stokes Raman scattering spectroscopy is mentioned: [Pg.35]    [Pg.35]    [Pg.1206]    [Pg.1273]    [Pg.164]    [Pg.106]    [Pg.28]    [Pg.239]    [Pg.52]    [Pg.127]    [Pg.140]    [Pg.169]    [Pg.240]    [Pg.1280]    [Pg.424]    [Pg.17]    [Pg.26]    [Pg.82]    [Pg.195]    [Pg.215]    [Pg.404]    [Pg.17]    [Pg.127]    [Pg.497]    [Pg.169]    [Pg.391]    [Pg.100]    [Pg.461]    [Pg.628]    [Pg.639]    [Pg.29]    [Pg.70]    [Pg.366]   


SEARCH



Anti-Stokes Raman scattering

Anti-Stokes scattering

Anti-stokes

Coherence spectroscopy

Coherent Raman scattering

Coherent Raman spectroscopy

Coherent anti-Stokes Raman

Coherent anti-Stokes Raman spectroscopy

Coherent anti-Stokes scattering

Coherent scatter

Raman anti-Stokes

Raman scattering

Raman scattering spectroscopy

Raman spectroscopy Stokes scattering

Raman spectroscopy anti-Stokes scattering

Spectroscopy coherent anti-Stokes Raman scattering, CARS

Spectroscopy scattering

Stokes Raman scattering

Stokes scatter

Stokes scattering

Time-resolved spectroscopies coherent anti-Stokes-Raman scattering

Vibrational spectroscopies coherent anti-Stokes-Raman scattering

© 2024 chempedia.info