Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt hydrocarbonyl catalyst reactions

An application to a considerably more complex reaction is shown in the next example, that of hydroformylation of olefins with a cobalt hydrocarbonyl catalyst. [Pg.125]

Example 6.5. Olefin hydroformylation with phosphine-substituted cobalt hydrocarbonyl catalyst [30], The pathway 6.9 of olefin hydroformylation with the "oxo" catalyst, HCo(CO)4, has been shown in Example 6.2 in Section 6.3. For phosphine-substituted catalysts, HCo(CO)3Ph (Ph = organic phosphine), the pathway olefin — aldehyde is essentially the same. However, these catalysts also promote hydrogenation of aldehyde to alcohol (Examples 7.3 and 7.4) and of olefin to paraffin (Example 7.5). Moreover, straight-chain primary aldehydes under the conditions of the reaction undergo to some extent condensation to aldol, which is subsequently dehydrated and hydrogenated to yield an alcohol of twice the carbon number (e.g., 2-ethyl hexanol from n-butanal see Section 11.2). The entire reaction system is... [Pg.143]

Example 7.6. Olefin hydroformylation with phosphine-substituted cobalt hydrocarbonyl catalyst [7], The overall reaction system of olefin hydroformylation with a phosphine-substituted cobalt hydrocarbonyl catalyst to produce alcohol, paraffin, and a heavy alcohol has been shown in Example 6.5 (Section 6.5) ... [Pg.180]

Synthesis of intermediates. An excellent technique for confirming or refuting a postulated pathway is to synthesize intermediates and use them as starting materials. Often, a key intermediate that is reactive enough to remain at trace level under reaction conditions is stable at very low temperatures (e.g., that of liquid nitrogen) and can be synthesized. If the reaction starting with the postulated intermediate yields the same products in the same ratios, this can be taken as evidence in favor of the presumed pathway. For example, the essential features of the Heck-Breslow mechanism of hydroformylation (see Example 6.2 in Section 6.3) with cobalt hydrocarbonyl catalysts have been verified in this way by synthesis and use of the alkyl-and acyl-cobalt species [42]. [Pg.189]

Example 8.11. Hydrcformylation with phosphine-substituted cobalt hydrocarbonyl catalyst. The phosphine-substituted cobalt hydrocarbonyl catalyst used for hydro-formylation of olefins has been described in Section 8.2 (see network 8.13). The principal reaction... [Pg.243]

One might say, a mass-transfer limitation under normal conditions acts as a gentle brake on the reaction, slowing it down at worst to the rate that mass transfer to the reacting phase can sustain, whereas in hydroformylation with cobalt hydrocarbonyl catalysts, mass transfer imposes an upper limit on the amount of catalyst the system will tolerate. Assume a small amount of catalyst is used mass transfer then has no trouble supplying as much CO as the reaction consumes (note conversion is first order in catalyst). However, if now the amount of catalyst and thereby the conversion rate are increased, the point may be reached where mass transfer can no longer keep up with CO consumption. The self-accelerating conversion then depletes the liquid of CO to the extent that the catalyst added beyond the limit of mass-transfer stability decomposes. [Pg.386]

Mass transfer can also affect the selectivity of a single, multistep reaction by altering the reactant ratios. An example is homogeneous liquid-phase hydro-formylation with phosphine-substituted cobalt hydrocarbonyl catalysts. Alcohol and paraffin byproduct are formed from olefin, H2, and CO. Mass transfer of CO is slower than that of H2, so that the H2 CO ratio in the liquid phase shifts in favor of H2. This causes more paraffin to be formed (see Example 7.5 in Section 7.3.2). [Pg.441]

The cobalt catalyst can be introduced into the reactor in any convenient form, such as the hydrocarbon-soluble cobalt naphthenate [61789-51 -3] as it is converted in the reaction to dicobalt octacarbonyl [15226-74-17, Co2(CO)g, the precursor to cobalt hydrocarbonyl [16842-03-8] HCo(CO)4, the active catalyst species. Some of the methods used to recover cobalt values for reuse are (11) conversion to an inorganic salt soluble ia water conversion to an organic salt soluble ia water or an organic solvent treatment with aqueous acid or alkah to recover part or all of the HCo(CO)4 ia the aqueous phase and conversion to metallic cobalt by thermal or chemical means. [Pg.458]

The earhest modification of the Oxo process (qv) employed cobalt hydrocarbonyl, HCo(CO)4, as catalyst. The reaction was carried out in the Hquid phase at 130—160°C and 10—20 MPa (1450—2900 psi) to give a ratio of n- to isobutyraldehyde of between 2 1 to 4 1. / -Butyraldehyde, the straight-chain isomer and the precursor of 2-ethylhexanol, was the more valuable product so that a high isomer ratio of n- to isobutyraldehyde was obviously advantageous. [Pg.380]

Hydroformylation, or the 0X0 process, is the reaction of olefins with CO and H9 to make aldehydes, which may subsequently be converted to higher alcohols. The catalyst base is cobalt naph-thenate, which transforms to cobalt hydrocarbonyl in place. A rhodium complex that is more stable and mnctions at a lower temperature is also used. [Pg.2094]

Metal Hydrides. Metal hydrides generally react readily with acetylenes, often by an insertion mechanism. Cobalt hydrocarbonyl gives complicated mixtures of compounds with acetylenes. The only products which have been identified so far are dicobalt hexacarbonyl acetylene complexes (34). Greenfield reports that, under conditions of the hydroformy lation reaction, acetylenes give only small yields of saturated monoaldehydes (30), probably formed by first hydrogenating the acetylene and then reacting with the olefin. Other workers have identified a variety of products from acetylene, carbon monoxide, and an alcohol with a cobalt catalyst, probably cobalt hydrocarbonyl. The major products observed were succinate esters (74,19) and succinate half ester acetals (19). [Pg.193]

RCH2OH + Co2(CO)7 (72) A known reaction of cobalt hydrocarbonyl suggests that the cobalt-carbon bond may be preferred. It has been reported that, under rather vigorous conditions, acetaldehyde or formaldehyde react with CO and a cobalt catalyst to give o -hydroxy acids or esters in alcohol solution (7). The intermediate with the carbon-cobalt bond probably is undergoing a CO insertion reaction, folllwed by a hydrolysis or... [Pg.201]

Figure D shows some olefin insertion reactions. Hydride additions to olefins have been known for a long while. Among these many examples, manganese hydrocarbonyl, and cobalt hydrocarbonyl, magnesium hydride, diborane, alkylalu-minum hydrides, germanium and tin hydrides all add quite readily to olefins. These last two cases are questionable because the mechanism is not clear. Some of these additions occur without a catalyst some are speeded up by ultraviolet light some are catalyzed by Group VIII metals. So it is not clear whether all these reactions are the same or whether there are several different mechanisms. Figure D shows some olefin insertion reactions. Hydride additions to olefins have been known for a long while. Among these many examples, manganese hydrocarbonyl, and cobalt hydrocarbonyl, magnesium hydride, diborane, alkylalu-minum hydrides, germanium and tin hydrides all add quite readily to olefins. These last two cases are questionable because the mechanism is not clear. Some of these additions occur without a catalyst some are speeded up by ultraviolet light some are catalyzed by Group VIII metals. So it is not clear whether all these reactions are the same or whether there are several different mechanisms.
An unusual synthesis of acyldienes from conjugated dienes, carbon monoxide, and alkyl or acyl halides using cobalt carbonylate anion as a catalyst should be mentioned here (57). The reaction apparently involves the addition of an acylcobalt carbonyl to a conjugated diene to produce a l-acylmethyl-7r-allylcobalt tricarbonyl, followed by elimination of cobalt hydrocarbonyl in the presence of base. The reaction can thus be made catalytic. Since the reaction was discussed in detail in the recent review by Heck (59), it will not be pursued further here. [Pg.136]

It has been observed that rapid isomerization accompanies the cobalt carbonyl-catalyzed hydrosilation of olefins (18). The reaction of equimolar amounts of a trisubstituted silane and dicobalt octacarbonyl has been shown to result in the formation of cobalt hydrocarbonyl (cf. Section IV). A very effective isomerization catalyst may be prepared by treatment of a solution of Co2(CO)8 in olefin ( 0.01 M) with a silicon hydride in sufficient quantity to slightly exceed the cobalt carbonyl concentration. [Pg.154]

Nickel carbonyl is the more widely known catalyst for the carboxylation reaction dicobalt octacarbonyl has the disadvantage of giving side reactions (15). Dicobalt octacarbonyl has been used in the presence of tributyl phosphine for the reaction of ethylene, carbon monoxide, water, and ethanol. Besides ethyl acetate, acetaldehyde and diethyl ketone were found (136). Hydrogen has been found to increase the rate of reaction (78), presumably by the formation of cobalt hydrocarbonyl. However, this can lead to the formation of aldehydes, as in the reaction of acetyl bromide when an 89.4% yield of aldehyde was obtained in spite of the presence of water (95). [Pg.157]

One of the most interesting catalytic reactions to be discovered is the so-called oxo reaction. The oxo reaction consists of the catalytic addition of carbon monoxide and hydrogen to olefins to form, primarily, aldehydes possessing one carbon atom more than the original olefin. This hy-droformylation reaction was developed during World War II by Roelen and co-workers (22) in Germany. While they utilized solid Fischer-Tropsch cobalt-thoria catalyst, it became apparent to them that the hydroformylation reaction was probably a homogeneous catalytic process with either dicobalt octaearbonyl or cobalt hydrocarbonyl as the catalyst. [Pg.191]

As noted above, the butyraldehyde was reduced to the alcohol in these experiments when no carbon monoxide was added and when 1000 psi was added, but not when 300 psi was added. When no carbon monoxide was present the reduction was catalyzed by the metallic cobalt. When the 1000 psi carbon monoxide was used, it was presumed that the reaction was homogeneous, soluble dicobalt octacarbonyl or cobalt hydrocarbonyl being the catalyst. It is known, however, that at 150° a carbon monoxide pressure of at least 600 psi is needed to keep [Co(CO)4U from decomposing to cobalt metal. When only 300 psi of carbon monoxide was present, therefore, the cobalt would remain as metal and be inactive because it was poisoned by the carbon monoxide. [Pg.192]

In a second experiment, 1000 p.s.i. of carbon monoxide was added (total pressure 3000 p.s.i.). In this experiment the calculated pressure drop was again secured and butanol was isolated from the dark-colored solution. The reaction was presumably homogeneous. The soluble dicobalt octacarbonyl or cobalt hydrocarbonyl was assumed to the catalyst. [Pg.389]

The unique hydrogenating ability of a mixture of synthesis gas and a cobalt catalyst is intimately associated with the chemistry of the cobalt compounds formed under these conditions, namely dicobalt octacarbonyl and cobalt hydrocarbonyl. Before any mechanism for the hydrogenation reaction is discussed it is imperative to consider, if even briefly, the chemistry of the cobalt carbonyls. [Pg.402]

The exact details of the mechanism of the hydrogenation in the presence of synthesis gas and a cobalt catalyst (oxo conditions) are still uncertain and the schemes reported here are speculative. It seems fairly well established that the hydrogenation is a homogeneous reaction and that the catalyst is probably cobalt hydrocarbonyl. At the conclusion of the hydrogenation reaction in hydrocarbon solvents when the products are at room temperature and atmospheric pressure, most of the cobalt can be accounted for as dicobalt octacarbonyl. However, the hydrocarbonyl was probably present under reaction conditions as a result of the equilibrium ... [Pg.410]

Most authors consider acetaldehyde as the primary product of methanol hydro-carbonylation which, depending on the reaction conditions and catalyst system, can be hydrogenated to yield ethanol. The potential of cobalt hydrocarbonyl to reduce aldehydes to alcohols in a homogeneous process in the presence of syngas, was recognized by Wender et al, in 1950 [78]. A mechanism according to Equations (29) and (30) was proposed involving an ethoxy cobalt imermediate. [Pg.126]

Example 8.3. Phosphine-substituted cobalt hydrocarbonyls as hydroformylation catalysts. Extensively studied catalyst systems with complex equilibria include phosphine-substituted hydrocarbonyls of cobalt, HCo(CO)3Ph, where Ph stands for a tertiary organic phosphine. They are modifications of the original oxo catalyst, HCo(CO)4. Like the latter, they catalyze the oxo or hydroformylation reaction of olefins to aldehydes one carbon number higher ... [Pg.204]

The example of the mass-transfer effect in olefin hydroformylation is interesting in still another respect. If a phosphine-substituted cobalt hydrocarbonyl is used as catalyst in combination with 1-olefin as reactant, a very strong burst of reaction ensues at the reactor inlet or at start of a batch reaction (see Example 12.1). [Pg.386]


See other pages where Cobalt hydrocarbonyl catalyst reactions is mentioned: [Pg.380]    [Pg.380]    [Pg.193]    [Pg.440]    [Pg.21]    [Pg.211]    [Pg.144]    [Pg.388]    [Pg.160]    [Pg.204]    [Pg.371]    [Pg.386]   
See also in sourсe #XX -- [ Pg.406 , Pg.407 , Pg.408 ]




SEARCH



Cobalt catalyst

Cobalt catalysts catalyst

Cobalt hydrocarbonyl

Cobalt reactions

Hydrocarbonyl

Hydrocarbonylation

Hydrocarbonylations

Hydrocarbonyls

© 2024 chempedia.info