Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clusters fundamentals

Catalysis with supported size-selected Pt clusters -Fundamental UHV and applied ambient experiments... [Pg.10]

Studying the influence of the precise size of the catalytically active species on reactivity is of major interest in catalytic research but is still extremely demanding. There are few examples carried out in the UHV showing that a catalytic process can indeed be tuned by the precise number of atoms in the catalyst. Under more realistic conditions, e.g. ambient pressure or liquid environment, such investigations are almost completely missing. Florian Schweinberger tackled in his doctoral thesis Catalysis with Supported Size-Selected Platinum Clusters Fundamental UHV and Applied Ambient Experiments both topics and presents results both from UHV and ambient studies. His work has been exceptionally well received and the doctoral thesis is particularly well written. [Pg.231]

The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

Ithough knowledge-based potentials are most popular, it is also possible to use other types potential function. Some of these are more firmly rooted in the fundamental physics of iteratomic interactions whereas others do not necessarily have any physical interpretation all but are able to discriminate the correct fold from decoy structures. These decoy ructures are generated so as to satisfy the basic principles of protein structure such as a ose-packed, hydrophobic core [Park and Levitt 1996]. The fold library is also clearly nportant in threading. For practical purposes the library should obviously not be too irge, but it should be as representative of the different protein folds as possible. To erive a fold database one would typically first use a relatively fast sequence comparison lethod in conjunction with cluster analysis to identify families of homologues, which are ssumed to have the same fold. A sequence identity threshold of about 30% is commonly... [Pg.562]

The field of fullerene chemistry expanded in an unexpected direction in 1991 when Sumio lijima of the NEC Fundamental Research Laboratories in Japan discovered fibrous carbon clusters in one of his fullerene preparations This led within a short time to substances of the type portrayed in Figure 11 7 called single-walled nanotubes The best way to think about this material IS as a stretched fullerene Take a molecule of Ceo cut it in half and place a cylindrical tube of fused six membered carbon rings between the two halves... [Pg.437]

Low-temperature, photoaggregation techniques employing ultraviolet-visible absorption spectroscopy have also been used to evaluate extinction coefficients relative to silver atoms for diatomic and triatomic silver in Ar and Kr matrices at 10-12 K 149). Such data are of fundamental importance in quantitative studies of the chemistry and photochemistry of metal-atom clusters and in the analysis of metal-atom recombination-kinetics. In essence, simple, mass-balance considerations in a photoaggregation experiment lead to the following expression, which relates the decrease in an atomic absorption to increases in diatomic and triatomic absorptions in terms of the appropriate extinction coefficients. [Pg.106]

Metal polysulfido complexes have attracted much interest not only from the viewpoint of fundamental chemistry but also because of their potential for applications. Various types of metal polysulfido complexes have been reported as shown in Fig. 1. The diversity of the structures results from the nature of sulfur atoms which can adopt a variety of coordination environments (mainly two- and three-coordination) and form catenated structures with various chain lengths. On the other hand, transition metal polysulfides have attracted interest as catalysts and intermediates in enzymatic processes and in catalytic reactions of industrial importance such as the desulfurization of oil and coal. In addition, there has been much interest in the use of metal polysulfido complexes as precursors for metal-sulfur clusters. The chemistry of metal polysulfido complexes has been studied extensively, and many reviews have been published [1-10]. [Pg.154]

In particular it can be shown that the dynamic flocculation model of stress softening and hysteresis fulfils a plausibility criterion, important, e.g., for finite element (FE) apphcations. Accordingly, any deformation mode can be predicted based solely on uniaxial stress-strain measurements, which can be carried out relatively easily. From the simulations of stress-strain cycles at medium and large strain it can be concluded that the model of cluster breakdown and reaggregation for prestrained samples represents a fundamental micromechanical basis for the description of nonlinear viscoelasticity of filler-reinforced rubbers. Thereby, the mechanisms of energy storage and dissipation are traced back to the elastic response of tender but fragile filler clusters [24]. [Pg.621]

Reactivity studies of organic ligands with mixed-metal clusters have been utilized in an attempt to shed light on the fundamental steps that occur in heterogeneous catalysis (Table VIII), although the correspondence between cluster chemistry and surface-adsorbate interactions is often poor. While some of these studies have been mentioned in Section ll.D., it is useful to revisit them in the context of the catalytic process for which they are models. Shapley and co-workers have examined the solution chemistry of tungsten-iridium clusters in an effort to understand hydrogenolysis of butane. The reaction of excess diphenylacetylene with... [Pg.106]

This chapter discusses the apphcation of femtosecond lasers to the study of the dynamics of molecular motion, and attempts to portray how a synergic combination of theory and experiment enables the interaction of matter with extremely short bursts of light, and the ultrafast processes that subsequently occur, to be understood in terms of fundamental quantum theory. This is illustrated through consideration of a hierarchy of laser-induced events in molecules in the gas phase and in clusters. A speculative conclusion forecasts developments in new laser techniques, highlighting how the exploitation of ever shorter laser pulses would permit the study and possible manipulation of the nuclear and electronic dynamics in molecules. [Pg.1]

Fig. 6.1 The fundamental structural unit found in the Chevrel phases (cluster MoeXg full circles Mo atoms) displayed in three ways to emphasize different views of the connectivity. In (a) an octahedron of molybdenums (Mo-Mo = 2.7 A) is encased in a cube of chalcogens (Mo-S 2.45 or Mo-Se 2.6 A). Scheme (b) exhibits the same cluster as consisting of an octahedron with its triangular faces capped by chalcogenides. In (c), the cluster has been reoriented so that a threefold axis is vertical. (Reproduced from [10])... Fig. 6.1 The fundamental structural unit found in the Chevrel phases (cluster MoeXg full circles Mo atoms) displayed in three ways to emphasize different views of the connectivity. In (a) an octahedron of molybdenums (Mo-Mo = 2.7 A) is encased in a cube of chalcogens (Mo-S 2.45 or Mo-Se 2.6 A). Scheme (b) exhibits the same cluster as consisting of an octahedron with its triangular faces capped by chalcogenides. In (c), the cluster has been reoriented so that a threefold axis is vertical. (Reproduced from [10])...
The foregoing results characterizing structurally simple supported metal clusters can be generalized, at least qualitatively, to provide fundamental understanding that pertains to industrial supported metal catalysts, with their larger, nonuniform particles of metal. [Pg.228]

In the eighties Baetzold and his school [27-33] carried out fundamental investigations on small clusters. The... [Pg.78]

Even when the patterns are known to cluster, there remain difficult issues that must be addressed before a kernel-based approach can be used effectively. Two of the more fundamental conceptual issues are the number and size of clusters that should be used to characterize the pattern classes. These are issues for which there are no hard and fast answers. Despite the application of well-developed statistical methods, including squared-error indices and variance analysis, determining the number and size of clusters remains extremely formidable. [Pg.60]


See other pages where Clusters fundamentals is mentioned: [Pg.24]    [Pg.163]    [Pg.24]    [Pg.163]    [Pg.2400]    [Pg.2761]    [Pg.2911]    [Pg.366]    [Pg.8]    [Pg.145]    [Pg.86]    [Pg.287]    [Pg.232]    [Pg.22]    [Pg.275]    [Pg.49]    [Pg.126]    [Pg.5]    [Pg.622]    [Pg.34]    [Pg.173]    [Pg.341]    [Pg.114]    [Pg.123]    [Pg.132]    [Pg.318]    [Pg.282]    [Pg.333]    [Pg.373]    [Pg.373]    [Pg.128]    [Pg.156]    [Pg.228]    [Pg.60]    [Pg.195]    [Pg.198]    [Pg.192]    [Pg.1]   
See also in sourсe #XX -- [ Pg.415 , Pg.416 , Pg.417 , Pg.418 , Pg.419 , Pg.420 , Pg.421 , Pg.422 , Pg.423 , Pg.424 , Pg.425 , Pg.426 , Pg.427 , Pg.428 , Pg.429 , Pg.430 , Pg.431 , Pg.432 , Pg.433 ]




SEARCH



Cluster expansion fundamentals

Metallic clusters fundamentals

© 2024 chempedia.info