Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clearance, physiological

The clinical performance of a hemodialy2er is usually described in terms of clearance, a term having its roots in renal physiology, which is defined as the rate of solute removal divided by the inlet flow concentration as shown in equation 7, where Cl is clearance in ml,/min and all other terms are as defined previously except that, in deference to convention, flow rates are now expressed in minutes rather than seconds and feed side (/) is now synonymous with blood flow on the luminal side. [Pg.36]

The realization of sensitive bioanalytical methods for measuring dmg and metaboUte concentrations in plasma and other biological fluids (see Automatic INSTRUMENTATION BlosENSORs) and the development of biocompatible polymers that can be tailor made with a wide range of predictable physical properties (see Prosthetic and biomedical devices) have revolutionized the development of pharmaceuticals (qv). Such bioanalytical techniques permit the characterization of pharmacokinetics, ie, the fate of a dmg in the plasma and body as a function of time. The pharmacokinetics of a dmg encompass absorption from the physiological site, distribution to the various compartments of the body, metaboHsm (if any), and excretion from the body (ADME). Clearance is the rate of removal of a dmg from the body and is the sum of all rates of clearance including metaboHsm, elimination, and excretion. [Pg.224]

Ito K and Houston JB. Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pharm Res 2005 22 103-12. [Pg.510]

Figure 22.1 A. Schema for a physiologically based pharmacokinetic model incorporating absorption in the stomach and intestines and distribntion to various tissues. B. Each organ or tissue type includes representation of perfusion (Q) and drug concentrations entering and leaving the tissue. Fluxes are computed by the product of an appropriate rate law, and permeable surface area accounts for the affinity (e.g., lipophilic drugs absorbing more readily into adipose tissue). Clearance is computed for each tissue based on physiology and is often assumed to be zero for tissues other than the gut, the liver, and the kidneys. Figure 22.1 A. Schema for a physiologically based pharmacokinetic model incorporating absorption in the stomach and intestines and distribntion to various tissues. B. Each organ or tissue type includes representation of perfusion (Q) and drug concentrations entering and leaving the tissue. Fluxes are computed by the product of an appropriate rate law, and permeable surface area accounts for the affinity (e.g., lipophilic drugs absorbing more readily into adipose tissue). Clearance is computed for each tissue based on physiology and is often assumed to be zero for tissues other than the gut, the liver, and the kidneys.
Temperature influences skin permeability in both physical and physiological ways. For instance, activation energies for diffusion of small nonelectrolytes across the stratum corneum have been shown to lie between 8 and 15 kcal/mole [4,32]. Thus thermal activation alone can double the rate skin permeability when there is a 10°C change in the surface temperature of the skin [33], Additionally, blood perfusion through the skin in terms of amount and closeness of approach to the skin s surface is regulated by its temperature and also by an individual s need to maintain the body s 37° C isothermal state. Since clearance of percuta-neously absorbed drug to the systemic circulation is sensitive to blood flow, a fluctuation in blood flow might be expected to alter the uptake of chemicals. No clear-cut evidence exists that this is so, however, which seems to teach us that even the reduced blood flow of chilled skin is adequate to efficiently clear compounds from the underside of the epidermis. [Pg.209]

The drawback of this approach is that it is essentially empirical, and does not allow for differences in metabolic clearance between the species, i.e., it assumes that clearance is proportional to blood flow. This works well for compounds that are highly extracted in the liver, and/or where passive renal clearance is the major pathway [5, 68]. An approach for compounds that are actively secreted into the urine has also been proposed [69], although the precise values of some of the physiological scaling factors have been questioned [70]. [Pg.146]

Another method of predicting human pharmacokinetics is physiologically based pharmacokinetics (PB-PK). The normal pharmacokinetic approach is to try to fit the plasma concentration-time curve to a mathematical function with one, two or three compartments, which are really mathematical constructs necessary for curve fitting, and do not necessarily have any physiological correlates. In PB-PK, the model consists of a series of compartments that are taken to actually represent different tissues [75-77] (Fig. 6.3). In order to build the model it is necessary to know the size and perfusion rate of each tissue, the partition coefficient of the compound between each tissue and blood, and the rate of clearance of the compound in each tissue. Although different sources of errors in the models have been... [Pg.147]

The motility of the small bowel has been studied in great detail in experimental, physiological and clinical research [21, 71, 106, 107,109], and the patterns are well defined in man [21, 23, 110], Although a standard test of intestinal motor activity with regard to the efficiency of mechanical luminal clearance is not yet established for clinical use, means to evaluate this function have been proposed. [Pg.11]

Schlesinger, R.B., Naumann, B.D., and Chen, L.C., Physiological and histological alterations in the bronchial mucociliary clearance system of rabbits following intermittent oral or nasal inhalation of sulfuric acid mist, J. Toxicol. Environ. Health. 12, 2-3, 441, 1983. [Pg.319]

Assuming the capsular pressures opposing the movement of water out of the blood and into the top of the nephron are constant, the net filtration pressure is due largely to the blood pressure. Any fall in blood pressure can have a dramatic effect on the efficiency of filtration and therefore clearance of waste materials. So important is the pressure within the renal vasculature that the kidney is critical in regulating systemic blood pressure via the renin-angiotensin-aldosterone (RAA) axis, a physiological process which relies on transport mechanisms within the renal tubules. [Pg.264]


See other pages where Clearance, physiological is mentioned: [Pg.171]    [Pg.227]    [Pg.307]    [Pg.330]    [Pg.573]    [Pg.612]    [Pg.626]    [Pg.189]    [Pg.536]    [Pg.539]    [Pg.120]    [Pg.150]    [Pg.79]    [Pg.452]    [Pg.136]    [Pg.308]    [Pg.71]    [Pg.85]    [Pg.141]    [Pg.440]    [Pg.447]    [Pg.227]    [Pg.326]    [Pg.160]    [Pg.422]    [Pg.446]    [Pg.547]    [Pg.401]    [Pg.53]    [Pg.74]    [Pg.1]    [Pg.346]    [Pg.1018]    [Pg.475]    [Pg.485]    [Pg.513]    [Pg.115]    [Pg.461]    [Pg.325]   
See also in sourсe #XX -- [ Pg.335 ]




SEARCH



Clearance physiological approach

Physiological approach to clearance

Physiological pharmacokinetics clearance

Physiological pharmacokinetics clearance relationship

Physiologically-based pharmacokinetic clearances

Renal physiology clearance

© 2024 chempedia.info