Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium mordant dyes

Chromium is the principal metal used with mordant dyes for wool, whereas both chromium and cobalt are used extensively ia premetallized types for wool and nylon. Copper(II) is employed almost exclusively as the chelating metal ion ia both metaUizable and premetallized direct dyes for cotton. [Pg.436]

Mordant Dyes. MetaUizable azo dyes are appHed to wool by the method used for acid dyes and then treated with metal salts such as sodium chromate [7775-11-5] sodium dichromate [10588-01-9] and chromium fluoride [1488-42-5] to form the metal complex in situ. This treatment usually produces a bathochromic shift ia shade, decreases the solubUity of the coloring matter, and yields dyeiags with improved fastness properties. The chromium salts can be appHed to the substrate before dyeiag (chrome-mordant or chrome-bottom method), together with the dye ia a single bath procedure (metachrome process), or as a treatment after dyeiag (afterchrome process). [Pg.436]

Most mordant dyes are monoazo stmctures. The most important feature of this class of dyes is excellent fastness to light and washing. Mordant dyes are available ia aU shades of the spectmm with the exceptioa of bright violets, blues, and greens. To be useful, the metal complexes must be stable, ie, must not demetallize when subjected to dyebath conditions and aU aftertreatment processes, especially repeated washings. Chromium forms stable chelate rings with mordant dyes which are not affected by treatment with either weak acid or alkaU (see Coordination compounds). [Pg.436]

Around 1800, the attack of chromite [53293-42-8] ore by lime and alkaU carbonate oxidation was developed as an economic process for the production of chromate compounds, which were primarily used for the manufacture of pigments (qv). Other commercially developed uses were the development of mordant dyeing using chromates in 1820, chrome tanning in 1828 (2), and chromium plating in 1926 (3) (see Dyes and dye intermediates Electroplating Leather). In 1824, the first chromyl compounds were synthesized followed by the discovery of chromous compounds 20 years later. Organochromium compounds were produced in 1919, and chromium carbonyl was made in 1927 (1,2). [Pg.132]

Mordant dyes have hydroxy groups in their molecular stmcture that are capable of forming complexes with metals. Although a variety of metals such as iron, copper, aluminum, and cobalt have been used, chromium is most preferable as a mordant. Alizarin or Cl Mordant Red 11 [72 8-0] (1) (Cl 58000), the principal component of the natural dye obtained from madder root, is the most typical mordant dye (see Dyes, natural). The aluminum mordant of alizarin is a well-known dye by the name of Turkey Red and was used to dye cotton and wool with excellent fastness. However, as is the case with many other mordant dyes, it gave way to the vat or the azoic dyes, which are applied by much simpler dyeing procedures. [Pg.335]

Acid—mordant dyes have characteristics similar to those of acid dyes which have a relatively low molecular weight, anionic substituents, and an affinity to polyamide fibers and mordant dyes. In general, brilliant shades caimot be obtained by acid—mordant dyes because they are used as their chromium mordant by treatment with dichromate in the course of the dyeing procedure. However, because of their excellent fastness for light and wet treatment, they are predominandy used to dye wool in heavy shades (navy blue, brown, and black). In terms of chemical constitution, most of the acid—mordant dyes are azo dyes some are triphenyhnethane dyes and very few anthraquinone dyes are used in this area. Cl Mordant Black 13 [1324-21 -6] (183) (Cl 63615) is one of the few examples of currentiy produced anthraquinone acid—mordant dyes. It is prepared by condensation of purpurin with aniline in the presence of boric acid, followed by sulfonation and finally by conversion to the sodium salt (146,147). [Pg.336]

Meta.1 Complex Dyes. Metals such as chromium and cobalt can be iatroduced iato dye molecules to give larger molecules. They can be regarded as being a special form of mordant dye. The complexes can be formed by chelating one or two molecules of dye with metal. They are appHed ia a similar manner to acid dyes. [Pg.349]

The ability of transition metal ions, and especially chromium (as Cr3+), to form very stable metal complexes may be used to produce dyeings on protein fibres with superior fastness properties, especially towards washing and light. The chemistry of transition metal complex formation with azo dyes is discussed in some detail in Chapter 3. There are two application classes of dyes in which this feature is utilised, mordant dyes and premetallised dyes, which differ significantly in application technology but involve similar chemistry. [Pg.123]

Mordant dyes generally have the characteristics of acid dyes but with the ability in addition to form a stable complex with chromium. Most commonly, this takes the form of two hydroxy groups on either side of (ortho to) the azo group of a monoazo dye, as illustrated for the case of C. I. Mordant Black 1 (151). The dye is generally applied to the fibre as an acid dye and then treated with a source of chromium, commonly sodium or potassium dichromate. As a result of the process, the chromium(vi) is reduced by functional groups on the wool fibre, for example the cysteine thiol groups, and a chromium(m) complex of the dye is formed within the... [Pg.123]

The complex formed when a mordant dyeing is aftertreated in a dichromate solution is retained by the wool in preference to the unmetallised mordant dye, which may desorb to some extent during the treatment. The latter is rather unstable in an oxidising solution and quinonoid by-products are often formed. If the chromium complex of the dye is formed from the desorbed dye in solution, this will further complicate the composition of the aftertreatment liquor. Thus reuse of mordant dyeing and aftertreatment baths is not an option. Furthermore, 100% rejection of dichromate ions would be required if the permeate of a membrane process treating the effluent was to be recycled [42]. [Pg.28]

Mordant dyes are notoriously troublesome from the viewpoint of colour matching because the hue of the chromium complex usually differs greatly from that of the unmetallised parent dye (section 5.4.1). If other metal ions are present in the treatment bath or on the fibre during chroming, the colour obtained is likely to differ from that of the pure chromium complex. Certain important chrome dyes, including Cl Mordant Black 11 (3.29) and Black 17 (3.30), are particularly sensitive to traces of iron or copper. The hue of the black dyeings obtained is redder in the presence of copper and browner with iron contamination. The fastness to light and wet treatments may also prove inferior under these conditions. Even certain 1 2 metal-complex acid dyes show similar effects in the presence of these impurities,... [Pg.103]

Synthetic alizarin (5.1), Cl Mordant Red 5 (5.2) and Cl Mordant Orange 1 (5.3), the first azo dye capable of forming a metal complex, in this case via the salicylic acid residue, are examples of the simple mordant dyes in widespread use at the time when Werner propounded his theory. The first metal-complex dyes to be prepared in substance, rather than within the fibre, were discovered by Bohn of BASF in 1912 by treating hydroxyanthraquinonesulphonic acids with a warm solution of a chromium(III) salt. In the... [Pg.231]

More recently, attention has turned to the aftertreatment of commercially available mordant dyes on wool with iron(II) and iron(III) salts as a potential source reduction approach to eliminating chromium ions from dyebath effluent [34]- The anticipated improvements in fastness performance were achieved. The structures of the conventional 1 2 iron-dye complexes formed on the wool fibres were characterised by negative-ion fast-atom bombardment spectroscopy and HPLC analysis [35]. [Pg.259]

CHROMIUM-RELATED PROBLEMS IN THE MORDANT DYEING OF WOOL... [Pg.268]

There are problems of definition with the term mordant dye (section 1.6.8) and it is often more precise to refer to those chelatable dyes, mostly o.o -dihydroxyazo ligands, that are applied to wool at low pH and fixed by dichromate aftertreatment as chrome dyes. Nevertheless, mordant dyeing is a convenient way to describe this two-stage process that has become the focus of substantial development work in recent years because of increasing concern about the environmental hazards associated with residual chromium in dyehouse effluent. [Pg.268]

Improved mordant dyeing methods to minimise residual chromium... [Pg.271]

Technically important dyes are salicylic acid derivatives that function as chrome mordant dyes for wool. Thus Cl Mordant Blue 1 (6.187) is made by the aldehyde synthesis from 2,6-dichlorobenzaldehyde and 2-hydroxy-3-methylbenzoic (o-cresotinic) acid in concentrated sulphuric acid. Oxidation of the leuco base is achieved by the addition of sodium nitrite. On wool the product, which is isolated as the sodium salt, is a dull maroon colour, changing to a bright blue on treatment with a chromium salt. Some dyes of this type, such as Cl Mordant Violet 1 (6.188), also contain a basic group. This compound is also prepared by the aldehyde route. [Pg.341]

Introduction 231 Fundamental concepts 233 Electronic structure of transition-metal ions 235 Structural characteristics necessary for complex formation 240 Preparation of metal-complex colorants 248 Isomerism in metal-complex dyes 260 Stability of metal-complex dyes 261 Chromium-related problems in the mordant dyeing of wool 268 References 277... [Pg.448]

MORDANT. A substance capable uf binding a dye to a textile liber. The mordant forms an insoluble lake in the liber, the color depending on the metal of the mordant. The most itnponanL mordants are trivaleni chromium complexes, metallic hydroxides, tannic acid. etc. Mordants are used with acid dyes, basic dyes, direct dyes, and sulfur dyes. Prcmetallized dyes contain chromium in the dye molecule. A mordant dye is a dye requiring use of a mordant 10 be effective. See also Dyes. [Pg.1041]

The success of logwood, from the heartwood of the tree Haematoxylan campechianum L found in Central America, as a black dyestuff also depended on complex formation. The active constituent of logwood is the chroman hematein (4), which is itself red. When applied with a chromium mordant, however, logwood gave black shades and held the premier position for blacks and blues until the late 1890s, by which time synthetic dyes accounted for some 90% of the dyes used. [Pg.36]

Efforts to overcome the drawbacks of mordant dyeing resulted in the manufacture of the so-called premetallized dyes, which are 1 1 chromium, 1 2 chromium, and 1 2 cobalt complexes. [Pg.304]

Acid dyes include metal-complexed azo structures, where the metals used are cobalt, chromium, and iron.10 Examples are 1 1 and 2 3 chromium complexes and 1 2 cobalt complexes, where the numbers employed represent the ratio of metal atoms to dye molecules. Metal-complexed dyes can be formed inside textile fibers by treating suitably dyed fibers with a solution containing metal ions.11 In this case, the metal-free forms of these azo dyes are known as mordant dyes and contain mainly ortho, ortho -bis-hydroxy or ortho-carboxy, ortho -hydroxy groups (e.g., C.I. Mordant Black 11, Mordant Yellow 8, and Mordant Orange 6). When the metal complexes are formed prior to the dye application process, the resultant dyes are known as... [Pg.508]


See other pages where Chromium mordant dyes is mentioned: [Pg.205]    [Pg.75]    [Pg.205]    [Pg.75]    [Pg.438]    [Pg.49]    [Pg.65]    [Pg.124]    [Pg.368]    [Pg.125]    [Pg.250]    [Pg.251]    [Pg.268]    [Pg.270]    [Pg.273]    [Pg.273]    [Pg.276]    [Pg.519]    [Pg.35]    [Pg.85]    [Pg.85]    [Pg.305]    [Pg.471]   


SEARCH



Mordant

Mordant dyes

Mordanting

© 2024 chempedia.info