Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine, elemental reactions with

Ana.lysls. The available chlorine (av CI2) in hypochlorite solutions or soHds is deterrnined by reaction with aqueous KI, followed by acidification with either acetic or sulfutic acid and titration of the Hberated iodine with standard thiosulfate. The av CI2 in a hypochlorite is a measure of the oxidi2ing capacity expressed in terms of elemental chlorine one hypochlorite ion is equivalent to one CI2 molecule. Thus pure Ca(OCl)2 has an av CI2 of 2 x mol wt... [Pg.469]

In its reactions SsO shows properties typical for both sulfur homocycles and sulfoxides. With elemental chlorine SOCI2 and S2CI2 are formed, with bromine SOBr2 and S2Br2 are obtained. Water decomposes SsO to H2S and SO2 besides elemental sulfur while cyanide ions expectedly produce thiocyanate. The reaction with iodide in the presence of formic acid is used for the iodometric determination of the oxygen content [70] ... [Pg.221]

The last reaction is the most favored of these three. The actual occurrence of the reactions with elemental phosphorus or phosphorous trichloride as products has been explained to be due to kinetic reasons. The thorium present in the ore volatilizes in the form of thorium tetrachloride (ThCl4) vapor other metallic impurities such as iron, chromium, aluminum, and titanium also form chlorides and vaporize. The product obtained after chlorination at 900 °C is virtually free from thorium chloride and phosphorous compounds, and also from the metals iron, aluminum, chromium, and titanium. [Pg.408]

In a review of incidents involving explosive reactivity of liquid chlorine with various organic auxiliary materials, two involved hydrocarbons. A polypropylene filter element fabricated with zinc oxide filler reacted explosively, rupturing the steel case previously tested to over 300 bar. Zinc chloride derived from the oxide may have initiated the runaway reaction. Hydrocarbon-based diaphragm pump oils or metal-drawing waxes were violently or explosively reactive [8], A violent explosion in a wax chlorination plant may have involved unplanned contact of liquid chlorine with wax or chlorinated wax residues in a steel trap. Corrosion products in the trap may have catalysed the runaway reaction, but hydrogen (also liberated by corrosion in the trap) may also have been involved [9],... [Pg.1406]

One Au-C bond in bis(thiazol-2-ylidene)gold cations is cleaved in the reaction with elemental iodine to give the corresponding (carbene)AuI complex and a 2-iodo-thiazolium salt, while chlorine and bromine oxidize the gold center to the gold(m) state.267... [Pg.291]

Undoubtedly, the best method for the production of pure anhydrous lanthanide trihalides involves direct reaction of the elements. However, suitable reaction vessels, of molybdenum, tungsten, or tantalum, have to be employed silica containers result in oxohalides (27). Trichlorides have been produced by reacting metal with chlorine (28), methyl chloride (28), or hydrogen chloride (28-31). Of the tribromides, only that of scandium has been prepared by direct reaction with bromine (32). The triiodides have been prepared by reacting the metal with iodine (27, 29, 31, 33-41) or with ammonium iodide (42). [Pg.69]

Grafting on the resin was achieved via a nucleophilic substitution of the benzylic chlorine by the deprotonated OH-linker of 52 (Scheme 29) by using a mixture of KO Bu, 18-crown-6 and CsBr. Determining the nitrogen content of solid phase samples by elemental analyses was accomplished, to verify the functionalization of the polymer. This enables calculation of the degree of functionalization. Usually, an occupancy of more than 20 percent of the theoretical sites was achieved. Saponification of the functionalized Merrifield resin P-52 leads to the monoanionic NJ, 0 functionalized solid phase. Subsequent reaction with [ReBrtCOlsJ afforded the polymer mounted tricarbonyl rhenium complex P-52-Re (Scheme 29). [Pg.155]

Low-temperature chlorination of dibenzothiophene with elemental chlorine produces a chlorine adduct at the sulfur atom which is readily decomposed to dibenzothiophene 5-oxide. However, nuclear chlorination of dibenzothiophene has still not been studied. 2-Chlorodibenzo-thiophene has been prepared by the Sandmeyer reaction on 2-amino-dibenzothiophene and this route has now been extended to give... [Pg.249]

When heated in air at 800°C AS4S4 vapors begin to dissociate to AS2S2 which then ignites to form arsenic oxides. Ignition in chlorine produces arsenic chloride. Reaction with fluorine forms arsenic trifluoride. It is stable in water and also in the air at ambient temperatures. It does not react with hot concentrated HCl but is decomposed by nitric acid. It forms thioarsenite ion, AsS3 and elemental arsenic when warmed with caustic soda solution. Similar reaction occurs with sodium sulfide. [Pg.68]

Fluorine also reacts with other halogens, forming interhalogen compounds. While with bromine and iodine it reacts vigorously at ordinary temperatures, with chlorine the reaction occurs at 200°C. Such interhalogen products with these halogens include iodine heptafluoride, bromine trifluoride, bromine pentafluoride, and chlorine trifluoride. Metalloid elements, such as arsenic, silicon, selenium, and boron also inflame in a stream of fluorine, forming fluorides. [Pg.299]

Until 1982, most alkoxysilanes had been produced from chlorosilanes and alcohols. Hydrochloric acid was therefore still a problem. In 1982, a process was developed in which TMOS could be made directly from elemental silicon and methanol [5]. In the production of silicate coatings, TMOS is first converted to TEOS by an alcoholysis reaction with ethanol. This prevents toxic methanol vapors from escaping from the curing coating. The TEOS is partially hydrolyzed with the rest of the hydrolysis occurring at the time of application. This is therefore a way to produce silicates without chlorine. (If a practical method for converting alkoxysilanes to alkylsilanes could be found, there would also be a nonchlorine method of production of silicones.)... [Pg.161]


See other pages where Chlorine, elemental reactions with is mentioned: [Pg.455]    [Pg.524]    [Pg.218]    [Pg.327]    [Pg.508]    [Pg.185]    [Pg.220]    [Pg.117]    [Pg.464]    [Pg.53]    [Pg.32]    [Pg.21]    [Pg.549]    [Pg.662]    [Pg.775]    [Pg.157]    [Pg.544]    [Pg.616]    [Pg.460]    [Pg.50]    [Pg.695]    [Pg.239]    [Pg.327]    [Pg.561]    [Pg.158]    [Pg.80]    [Pg.117]    [Pg.90]    [Pg.483]    [Pg.104]    [Pg.194]    [Pg.395]    [Pg.387]    [Pg.370]    [Pg.213]    [Pg.476]    [Pg.145]    [Pg.227]   


SEARCH



Chlorination reactions

Chlorination reactions with

Chlorine element

Chlorine reactions

Chlorins reactions

Elemental Reactions

Elemental chlorine

Elements reaction with

Elements with

Reaction with chlorine

© 2024 chempedia.info