Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride Alcohol test

Acid anhydride-diol reaction, 65 Acid anhydride-epoxy reaction, 85 Acid binders, 155, 157 Acid catalysis, of PET, 548-549 Acid-catalyzed hydrolysis of nylon-6, 567-568 of nylon-6,6, 568 Acid chloride, poly(p-benzamide) synthesis from, 188-189 Acid chloride-alcohol reaction, 75-77 Acid chloride-alkali metal diphenol salt interfacial reactions, 77 Acid chloride polymerization, of polyamides, 155-157 Acid chloride-terminated polyesters, reaction with hydroxy-terminated polyethers, 89 Acid-etch tests, 245 Acid number, 94 Acidolysis, 74 of nylon-6,6, 568... [Pg.575]

The obvious question is whether the achiral stereodirecting base effect observed with DAG is a particular case of this alcohol or general behavior of secondary chiral carbinols. In order to answer this question and to get a better insight into the mechanism of the reaction, the reactivity of different chiral carbinols with methane-sulfinyl chloride was tested using the optimal conditions previously determined for DAG (1) in the presence of i-Pr2NEt in toluene at -78 °C, and (2) with pyridine in THF at -78 °C.116... [Pg.94]

Color test. Some phenols give characteristic colors on addition of a drop of ferric chloride solution to a dilute aqueous or alcoholic solution of the material. The test is negative with nitrophenols and with m- and p-phenolcarboxylic acids. The j8-keto ester (1) and the j8-diketone (2) give ferric chloride color tests indicative of the presence of the enol forms. [Pg.199]

Wash the recidue left on the filter paper with 60% alcohol to remove excess ammonium acetate. To ensure this add a pinch of solid NH Cl to the recidue on the filter paper and wash with alcohol till the filtrate is free from chloride (as tested with silver nitrate solution, the filtrate is perfectly clear when free from chloride). If the washing is to be interrupted such as for the night, attach a rubber tube to the tail of the fimnel and pinch it tight with a clip when there is solution above the level of soil in the filter paper, i.e. in no case the soil should dry otherwise loss of ammonia may occur. [Pg.113]

The Ferric Chloride Phenol Test. —Many phenols give typical blue, green, purple, or red colors when a drop of ferric chloride is added to a dilute aqueous solution of the unknown. A number of phenols which do not give this test readily are found to respond when tested in alcoholic solution. Among the carboxy derivatives of phenol, those having the carboxyl group ortho to the phenolic hydroxyl, as in salicylic acid, respond with a typical deep purple color, but many compounds with the carboxyl group in the meta or para position fail to respond to the test. [Pg.56]

Absolute diethyl ether. The chief impurities in commercial ether (sp. gr. 0- 720) are water, ethyl alcohol, and, in samples which have been exposed to the air and light for some time, ethyl peroxide. The presence of peroxides may be detected either by the liberation of iodine (brown colouration or blue colouration with starch solution) when a small sample is shaken with an equal volume of 2 per cent, potassium iodide solution and a few drops of dilute hydrochloric acid, or by carrying out the perchromio acid test of inorganic analysis with potassium dichromate solution acidified with dilute sulphuric acid. The peroxides may be removed by shaking with a concentrated solution of a ferrous salt, say, 6-10 g. of ferrous salt (s 10-20 ml. of the prepared concentrated solution) to 1 litre of ether. The concentrated solution of ferrous salt is prepared either from 60 g. of crystallised ferrous sulphate, 6 ml. of concentrated sulphuric acid and 110 ml. of water or from 100 g. of crystallised ferrous chloride, 42 ml. of concentrated hydiochloric acid and 85 ml. of water. Peroxides may also be removed by shaking with an aqueous solution of sodium sulphite (for the removal with stannous chloride, see Section VI,12). [Pg.163]

Method 2. Mix 1 0 g. of 3 5-dinitrobenzoic acid with 1 5 g. of phosphorus pentachloride in a small, dry test-tube. Warm the mixture gently over a small smoky fiame to start the reaction when the reaction has subsided (but not before), boil for 1-2 minutes or until the solid matter has dissolved. Pour the mixture while still liquid on a dry watch glass (CAUTION the fumes are irritating to the eyes). When the product has solidified, remove the liquid by-product (phosphorus oxychloride) by transferring the pasty mixture to a pad of several thicknesses of filter paper or to a small piece of porous tile. Spread the material until the liquid has been absorbed and the residual solid is dry. Transfer the 3 5 dinitrobenzoyl chloride to a test-tube, add 0-5-1 ml. of the alcohol, and continue as in Method 1. [Pg.263]

Place 0 -5 g. of 3 4 5 triiodobenzoyl chloride in a small test-tube, add 0 -25 ml. of the alcohol - ether and heat the mixture gently over a micro burner until the evolution of hydrogen chloride ceases (3-5 minutes). Pour the molten mass into 10 ml. of 20 per cent, alcohol to which crushed ice has been added. Some derivatives solidify instantly those which separate as oils change to solids in a few minutes without further manipulation. Recrystallise from rectified spirit (use 50 per cent, alcohol for esters of methyl and butyl carbitol ). [Pg.265]

Heat a little pseudo-saccharin chloride with excess of the anhydrous alcohol in a test-tube until hydrogen chloride is no longer evolved. Recrystallise from alcohol or other organic solvent. [Pg.266]

Place a mixture of 0-5 g. of finely powdered thiourea, 0-5 g. of the alkyl halide and 5 ml. of alcohol in a test-tube or small flask equipped with a reflux condenser. Reflux the mixture for a j)eriod depending upon the nature of the halide primary alkyl bromides and iodides, 10-20 minutes (according to the molecular weight) secondary alkyl bromides or iodides, 2-3 hours alkyl chlorides, 3-5 hours polymethy lene dibromides or di-iodides, 20-50 minutes. Then add 0 5 g. of picric acid, boil until a clear solution is obtained, and cool. If no precipitate is obtained, add a few drops of water. RecrystaUise the resulting S-alkyl-iso-thiuronium picrate from alcohol. [Pg.292]

Add 1 ml. of the alcohol-free ether to 0-1-0-15 g. of finely-powdered anhydrous zinc chloride and 0 5 g. of pure 3 5-dinitrobenzoyl chloride (Section 111,27,1) contained in a test-tube attach a small water condenser and reflux gently for 1 hour. Treat the reaction product with 10 ml. of 1-5N sodium carbonate solution, heat and stir the mixture for 1 minute upon a boiling water bath, allow to cool, and filter at the pump. Wash the precipitate with 5 ml. of 1 5N sodium carbonate solution and twice with 6 ml. of ether. Dry on a porous tile or upon a pad of filter paper. Transfer the crude ester to a test-tube and boil it with 10 ml. of chloroform or carbon tetrachloride filter the hot solution, if necessary. If the ester does not separate on cooling, evaporate to dryness on a water bath, and recrystallise the residue from 2-3 ml. of either of the above solvents. Determine the melting point of the resulting 3 5 dinitro benzoate (Section 111,27). [Pg.316]

Place 1 0 g. of the monobasic acid and 2 g. of aniline or p-toluidine in a dry test-tube, attach a short air condenser and heat the mixture in an oil bath at 140-160° for 2 hours do not reflux too vigorously an acid that boils below this temperature range and only allow steam to escape from the top of the condenser. For a sodium salt, use the proportions of 1 g. of salt to 1 5 g. of the base. If the acid is dibasic, employ double the quantity of amine and a reaction temperature of 180-200° incidentally, the procedure is recommended for dibasic acids since the latter frequently give anhydrides with thionyl chloride. Powder the cold reaction mixture, triturate it with 20-30 ml. of 10 per cent, hydrochloric acid, and recrystallise from dilute alcohol. [Pg.362]

Benzoates. Dissolve 0-5 g. of the amino acid in 10 ml. of 10 per cent, sodium bicarbonate solution and add 1 g. of benzoyl chloride. Shake the mixture vigorously in a stoppered test-tube remove the stopper from time to time since carbon dioxide is evolved. When the odour of benzoyl chloride has disappeared, acidify with dilute hydrochloric acid to Congo red and filter. Extract the solid with a little cold ether to remove any benzoic acid which may be present. RecrystaUise the benzoyl derivative which remains from hot water or from dilute alcohol. [Pg.436]

Mix 0-2 g. of 3 5-dinitrobenzoyl chloride, 6 drops of the mercaptan and 1-3 drops of pyridine in a test-tube, and heat the mixture in a beaker of boiling water until fumes of hydrogen chloride cease to appear (15-30 minutes). Add a few drops of water, followed by a drop or two of pyridine to eliminate the excess of the reagent. The product sohdifies upon stirring with a glass rod. Add water, filter, and recrystalUse from dilute alcohol or dilute acetic acid. [Pg.501]

Primary aromatic amines differ from primary aliphatic amines in their reaction with nitrous acid. Whereas the latter yield the corresponding alcohols (RNHj — ROH) without formation of intermediate products see Section 111,123, test (i), primary aromatic amines 3neld diazonium salts. Thus aniline gives phcnyldiazonium chloride (sometimes termed benzene-diazonium chloride) CjHbNj- +C1 the exact mode of formation is not known, but a possible route is through the phenjdnitrosoammonium ion tlius ... [Pg.590]

Dissolve 1 0 g. of the compound in 5 ml. of dry chloroform in a dry test-tuhe, cool to 0°, and add dropwise 5g. (2-8 ml.) of redistilled chloro-sulphonic acid. When the evolution of hydrogen chloride subsides, allow the reaction mixture to stand at room temperature for 20 minutes. Pour the contents of the test-tube cautiously on to 25 g. of crushed ice contained in a small beaker. Separate the chloroform layer and wash it with a httle cold water. Add the chloroform layer, with stirring, to 10 ml. of concentrated ammonia solution. After 10 minutes, evaporate the chloroform on a water bath, cool the residue and treat it with 5 ml. of 10 per cent, sodium hydroxide solution the sulphonamide dissolves as the sodium derivative, RO.CgH4.SO,NHNa. Filter the solution to remove any insoluble matter (sulphone, etc.), acidify the filtrate with dilute hydrochloric acid, and cool in ice water. Collect the sulphonamide and recrystallise it from dilute alcohol. [Pg.672]

Methyl p-toluenesulphonate. This, and other alkyl esters, may be prepared in a somewhat similar manner to the n-butyl ester with good results. Use 500 g. (632 ml.) of methyl alcohol contained in a 1 litre three-necked or bolt-head flask. Add 500 g. of powdered pure p-toluene-sulphonyl chloride with mechanical stirring. Add from a separatory funnel 420 g. of 25 per cent, sodium hydroxide solution drop by drop maintain the temperature of the mixture at 23-27°. When all the alkali has been introduced, test the mixture with litmus if it is not alkaline, add more alkali until the mixture is neutral. Allow to stand for several hours the lower layer is the eater and the upper one consists of alcohol. Separate the ester, wash it with water, then with 4 per cent, sodium carbonate solution and finally with water. Dry over a little anhydrous magnesium sulphate, and distil under reduced pressure. Collect the methyl p-toluenesulphonate at 161°/10 mm. this solidifies on cooling and melts at 28°. The yield is 440 g. [Pg.825]

Recovery of the wopropyl alcohol. It is not usually economical to recover the isopropyl alcohol because of its lo v cost. However, if the alcohol is to be recovered, great care must be exercised particularly if it has been allowed to stand for several days peroxides are readily formed in the impure acetone - isopropyl alcohol mixtures. Test first for peroxides by adding 0-6 ml. of the isopropyl alcohol to 1 ml. of 10 per cent, potassium iodide solution acidified with 0-6 ml. of dilute (1 5) hydrochloric acid and mixed with a few drops of starch solution if a blue (or blue-black) coloration appears in one minute, the test is positive. One convenient method of removing the peroxides is to reflux each one litre of recovered isopropyl alcohol with 10-15 g. of solid stannous chloride for half an hour. Test for peroxides with a portion of the cooled solution if iodine is liberated, add further 5 g. portions of stannous chloride followed by refluxing for half-hour periods until the test is negative. Then add about 200 g. of quicklime, reflux for 4 hours, and distil (Fig. II, 47, 2) discard the first portion of the distillate until the test for acetone is negative (Crotyl Alcohol, Note 1). Peroxides generally redevelop in tliis purified isopropyl alcohol in several days. [Pg.886]

B. Mix 1 drop or several small crystals (ca. 0 05 g.) of the compound with 1 ml. of 0-5 V hydroxylamine hydrochloride in 95 per cent, ethanol and add 0-2 ml ot aqueous sodium hydroxide. Heat the mixture to boiling and, after the solution has cooled slightly, add 2 ml. of N hydrochloric acid. If the solution is cloudy, add 2 ml. of 95 per cent, ethyl alcohol. Observe the colour produced when I drop of 6 per cent, ferric chloride solution is added. If the resulting colour does not persist, continue to add the reagent dropwise until the observed colour pervades the entire solution. Usually only 1 drop of the ferric chloride solution is necessary. Compare the colour with that produced in test. 4. A positive test will be a distinct burgundy or magenta colour as compared with the yellow colour observed when the original compound is tested with ferric chloride solution in the presence of acid. [Pg.1063]

Acetyl chloride test. In a small, dry test-tube treat 0 -5 ml. of the compound with 0-3-0-4 ml. of redistUled acetyl chloride and note whether reaction occurs. Add 3 ml. of water and neutralise the aqueous layer with solid sodium bicarbonate. Look for a product different from the original alcohol. [Pg.1068]

Ferric chloride test. Dissolve 1 drop or 0 05 g. of the compound in 5 ml. of water and add 1 drop of ferric chloride solution observe the colour produced. If the result is negative in aqueous solution, repeat the test in alcoholic solution. [Pg.1072]

Reduction of a nitro compound to a hydroxylamine. Dissolve 0-5 g. of the compound in 10 ml. of 50 per cent, alcohol, add 0-5 g. of solid ammonium chloride and about 0 5 g. of zinc powder. Heat to boiling and allow the ensuing chemical reaction to proceed for 5 minutes. Filter from the excess of zinc powder and test the filtrate with ToUen s reagent see Section III,70,(i). An immediate black or grey precipitate or a silver mirror indicates the presence of a hydroxylamine formed by the reduction of the nitro compound. Alternatively, warm the filtrate with Fehling s solution a hydroxylamine will precipitate red cuprous oxide. (A blank test should be performed with the original compound.)... [Pg.1076]


See other pages where Chloride Alcohol test is mentioned: [Pg.444]    [Pg.142]    [Pg.793]    [Pg.94]    [Pg.968]    [Pg.558]    [Pg.286]    [Pg.444]    [Pg.58]    [Pg.444]    [Pg.62]    [Pg.142]    [Pg.219]    [Pg.142]    [Pg.58]    [Pg.187]    [Pg.62]    [Pg.261]    [Pg.261]    [Pg.261]    [Pg.291]    [Pg.369]    [Pg.436]    [Pg.487]    [Pg.588]    [Pg.624]    [Pg.1071]    [Pg.303]    [Pg.551]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Alcohol testing

Alcohols tests

Chlorides alcohols

© 2024 chempedia.info