Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemicals molybdenum

The evidence for more specific physical and chemical influences of substrate composition is less clear. Chemically, molybdenum disulphide is very inert. The sulphur atoms which form the surface layer of a lamella are strongly bonded to the molybdenum atoms, and their valency electrons are fully occupied in those bonds. Although molybdenum disulphide is highly polarised in its hexagonal crystals, the free energy at the lamellar surfaces is very small. [Pg.72]

Fig. XVIII-20. Spectra of pyridine adsorbed on a water-containing molybdenum oxide (IV)-Al203 catalyst L and B indicate features attributed to pyridine adsorbed on Lewis and Brpnsted acid sites, respectively. (Reprinted with permission from Ref. 191. Copyright 1976 American Chemical Society.)... Fig. XVIII-20. Spectra of pyridine adsorbed on a water-containing molybdenum oxide (IV)-Al203 catalyst L and B indicate features attributed to pyridine adsorbed on Lewis and Brpnsted acid sites, respectively. (Reprinted with permission from Ref. 191. Copyright 1976 American Chemical Society.)...
It is used in certain nickel-based alloys, such as the "Hastelloys(R)" which are heat-resistant and corrosion-resistant to chemical solutions. Molybdenum oxidizes at elevated temperatures. The metal has found recent application as electrodes for electrically heated glass furnaces and foreheaths. The metal is also used in nuclear energy applications and for missile and aircraft parts. Molybdenum is valuable as a catalyst in the refining of petroleum. It has found applications as a filament material in electronic and electrical applications. Molybdenum is an... [Pg.78]

Molybdenum hexafluoride [7783-77-9] MoF, is a volatile liquid at room temperature. It is very moisture sensitive, hydrolysing immediately upon contact with water to produce HF and molybdenum oxyfluorides. MoF should therefore be handled in a closed system or in a vacuum line located in a chemical hood. The crystals possess a body-centered cubic stmcture that changes to orthorhombic below —96° C (1,2). The known physical properties are Hsted in Table 1. [Pg.212]

Molybdenum hexafluoride is used in the manufacture of thin films (qv) for large-scale integrated circuits (qv) commonly known as LSIC systems (3,4), in the manufacture of metallised ceramics (see MetaL-MATRIX COMPOSITES) (5), and chemical vapor deposition of molybdenum and molybdenum—tungsten alloys (see Molybdenumand molybdenum alloys) (6,7). The latter process involves the reduction of gaseous metal fluorides by hydrogen at elevated temperatures to produce metals or their alloys such as molybdenum—tungsten, molybdenum—tungsten—rhenium, or molybdenum—rhenium alloys. [Pg.212]

Chromium is the most effective addition to improve the resistance of steels to corrosion and oxidation at elevated temperatures, and the chromium—molybdenum steels are an important class of alloys for use in steam (qv) power plants, petroleum (qv) refineries, and chemical-process equipment. The chromium content in these steels varies from 0.5 to 10%. As a group, the low carbon chromium—molybdenum steels have similar creep—mpture strengths, regardless of the chromium content, but corrosion and oxidation resistance increase progressively with chromium content. [Pg.117]

DRI retains the chemical purity of the iron ore from which it is produced, therefore it tends to be very low in residual elements such as copper, chrome, tin, nickel, and molybdenum. Typical ranges of DRI chemical compositions are shown in Table 2. [Pg.424]

The goal of lubrication is elimination of this wear and minimizing friction otherwise encountered in dry sliding. This is accompHshed ideally with complete separation of the mbbing surfaces with a full film of lubricant. When complete hill-film separation is impossible, surface chemical effects of a lubricating oil and its additives, or solid-film lubricants such as graphite and molybdenum sulfide, can assist. [Pg.234]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

Methanol undergoes reactions that are typical of alcohols as a chemical class (3). Dehydrogenation and oxidative dehydrogenation to formaldehyde over silver or molybdenum oxide catalysts are of particular industrial importance. [Pg.274]

Under unusual circumstances, toxicity may arise from ingestion of excess amounts of minerals. This is uncommon except in the cases of fluorine, molybdenum, selenium, copper, iron, vanadium, and arsenic. Toxicosis may also result from exposure to industrial compounds containing various chemical forms of some of the minerals. Aspects of toxicity of essential elements have been pubhshed (161). [Pg.388]

Chemical products are produced from technical-grade oxide in two very different ways. Molybdenum trioxide can be purified by a sublimation process because molybdenum trioxide has an appreciable vapor pressure above 650°C, a temperature at which most impurities have very low volatiUty. The alternative process uses wet chemical methods in which the molybdenum oxide is dissolved in ammonium hydroxide, leaving the gangue impurities behind. An ammonium molybdate is crystallized from the resulting solution. The ammonium molybdate can be used either directly or thermally decomposed to produce the pure oxide, MoO. ... [Pg.463]

Chemical Properties. Molybdenum has good resistance to chemical attack by mineral acids, provided that oxidizing agents ate not present. The metal also offers excellent resistance to attack by several liquid metals. The approximate temperature limits for molybdenum to be considered for long-time service while in contact with various metals in the hquid state ate as follows ... [Pg.465]

Although molybdenum is an essential element, excess levels can have deleterious effects. The LD q and TLV values of the most common Mo compounds are Hsted in Table 3 (63,64). In general the toxicity of Mo compounds is considered to be low. For example, M0S2 has been found to be virtually nontoxic even at high levels. Certain Mo compounds such as MoCl and Mo(CO), have higher toxicity because of the chemical nature and reactivity of these compounds rather than the Mo content. Supplementary dietary Cu ", thiosulfate, methionine, and cysteine have been shown to be effective in alleviating Mo toxicity in animals. [Pg.476]

In most of the nonmetaHurgical uses of molybdenum compounds the metal is coordinated by oxygen or sulfur ligands. Molybdenum nitrides, carbides, and sihcides are, however, coming under increasing study for various appHcations. Roughly 75% of all molybdenum compounds are used as catalysts in the petroleum and chemicals industries. [Pg.476]

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

The isotope molybdenum-99 is produced in large quantity as the precursor to technetium-99y, a radionucleide used in numerous medical imaging procedures such as those of bone and the heart (see Medical imaging technology). The molybdenum-99 is either recovered from the fission of uranium or made from lighter Mo isotopes by neutron capture. Typically, a Mo-99 cow consists of MoO adsorbed on a lead-shielded alumina column. The TcO formed upon the decay of Mo-99 by P-decay, = 66 h, has less affinity for the column and is eluted or milked and either used directly or appropriately chemically derivatized for the particular diagnostic test (100). [Pg.478]

Esterification ofTerephthalicAcid. Esterification of terephthaUc acid is also used to produce dimethyl terephthalate commercially, although the amount made by this process has declined. Imperial Chemical Industries, Eastman Kodak, Amoco, Toray, Mitsubishi, and Mitsui Petrochemical have all developed processes. Esterification (qv) generally uses a large excess of methanol in a Hquid process at 250—300°C. The reaction proceeds rapidly without a catalyst, but metal catalysts such as zinc, molybdenum, antimony, and tin can be used. Conversion to dimethyl terephthalate is limited by equiHbrium, but yields of 96% have been reported (75,76). [Pg.489]

Synthesis. The total aimual production of PO in the United States in 1993 was 1.77 biUion kg (57) and is expected to climb to 1.95 biUion kg with the addition of the Texaco plant (Table 1). There are two principal processes for producing PO, the chlorohydrin process favored by The Dow Chemical Company and indirect oxidation used by Arco and soon Texaco. Molybdenum catalysts are used commercially in indirect oxidation (58—61). Capacity data for PO production are shown in Table 1 (see Propylene oxide). [Pg.348]

The physical and mechanical properties of steel depend on its microstmcture, that is, the nature, distribution, and amounts of its metaHographic constituents as distinct from its chemical composition. The amount and distribution of iron and iron carbide determine most of the properties, although most plain carbon steels also contain manganese, siUcon, phosphoms, sulfur, oxygen, and traces of nitrogen, hydrogen, and other chemical elements such as aluminum and copper. These elements may modify, to a certain extent, the main effects of iron and iron carbide, but the influence of iron carbide always predominates. This is tme even of medium alloy steels, which may contain considerable amounts of nickel, chromium, and molybdenum. [Pg.384]


See other pages where Chemicals molybdenum is mentioned: [Pg.19]    [Pg.373]    [Pg.19]    [Pg.373]    [Pg.653]    [Pg.232]    [Pg.1089]    [Pg.238]    [Pg.324]    [Pg.165]    [Pg.243]    [Pg.212]    [Pg.124]    [Pg.126]    [Pg.152]    [Pg.238]    [Pg.462]    [Pg.462]    [Pg.476]    [Pg.476]    [Pg.6]    [Pg.20]    [Pg.56]    [Pg.57]    [Pg.92]    [Pg.96]    [Pg.358]    [Pg.375]    [Pg.554]    [Pg.46]    [Pg.46]    [Pg.211]    [Pg.379]   
See also in sourсe #XX -- [ Pg.5 , Pg.21 ]

See also in sourсe #XX -- [ Pg.5 , Pg.21 ]




SEARCH



Chemical Uses of Molybdenum

Molybdenum chemical properties

Molybdenum complexes chemical reactivity

Molybdenum complexes chemical shift ranges

Molybdenum surfaces, chemically modified

© 2024 chempedia.info