Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical simple model

Excitable media are some of tire most commonly observed reaction-diffusion systems in nature. An excitable system possesses a stable fixed point which responds to perturbations in a characteristic way small perturbations return quickly to tire fixed point, while larger perturbations tliat exceed a certain tlireshold value make a long excursion in concentration phase space before tire system returns to tire stable state. In many physical systems tliis behaviour is captured by tire dynamics of two concentration fields, a fast activator variable u witli cubic nullcline and a slow inhibitor variable u witli linear nullcline [31]. The FitzHugh-Nagumo equation [34], derived as a simple model for nerve impulse propagation but which can also apply to a chemical reaction scheme [35], is one of tire best known equations witli such activator-inlribitor kinetics ... [Pg.3064]

One of the most sensitive tests of the dependence of chemical reactivity on the size of the reacting molecules is the comparison of the rates of reaction for compounds which are members of a homologous series with different chain lengths. Studies by Flory and others on the rates of esterification and saponification of esters were the first investigations conducted to clarify the dependence of reactivity on molecular size. The rate constants for these reactions are observed to converge quite rapidly to a constant value which is independent of molecular size, after an initial dependence on molecular size for small molecules. The effect is reminiscent of the discussion on the uniqueness of end groups in connection with Example 1.1. In the esterification of carboxylic acids, for example, the rate constants are different for acetic, propionic, and butyric acids, but constant for carboxyUc acids with 4-18 carbon atoms. This observation on nonpolymeric compounds has been generalized to apply to polymerization reactions as well. The latter are subject to several complications which are not involved in the study of simple model compounds, but when these complications are properly considered, the independence of reactivity on molecular size has been repeatedly verified. [Pg.278]

A simple model for the formation and growth of an aerosol at ambient conditions involves the formation of a gas product by the appropriate chemical oxidation reactions in the gas phase. This product must have a... [Pg.145]

Villemiaux, J., 1989. A simple model for partial segregation in a semibatch reactor. American Institute of Chemical Engineers Annual Meeting, San Francisco, Paper 114a. [Pg.325]

FIG. 19 Scheme of a simple fluid confined by a chemically heterogeneous model pore. Fluid modecules (grey spheres) are spherically symmetric. Each substrate consists of a sequence of crystallographic planes separated by a distance 8 along the z axis. The surface planes of the two opposite substrates are separated by a distance s,. Periodic boundary conditions are imposed in the x and y directions (see text) (from Ref. 77). [Pg.61]

Let us consider a simple model of a quenched-annealed system which consists of particles belonging to two species species 0 is quenched (matrix) and species 1 is annealed, i.e., the particles are allowed to equlibrate between themselves in the presence of 0 particles. We assume that the subsystem composed of 0 particles has been a usual fluid before quenching. One can characterize it either by the density or by the value of the chemical potential The interparticle interaction Woo(r) does not need to be specified for the moment. It is just assumed that the fluid with interaction woo(r) has reached an equlibrium at certain temperature Tq, and then the fluid has been quenched at this temperature without structural relaxation. Thus, the distribution of species 0 is any one from a set of equihbrium configurations corresponding to canonical or grand canonical ensemble. We denote the interactions between annealed particles by Un r), and the cross fluid-matrix interactions by Wio(r). [Pg.297]

Not all models are physical or pictorial objects. For example, the Sn2 mechanism is a simple model for a particular class of reactions that successfully explains a lot of chemistry. What all of these things have in common is that they use a set of pre-defined objects and rules to approximate real chemical entities and processes. [Pg.3]

Many computational studies in heterocyclic chemistry deal with proton transfer reactions between different tautomeric structures. Activation energies of these reactions obtained from quantum chemical calculations need further corrections, since tunneling effects may lower the effective barriers considerably. These effects can either be estimated by simple models or computed more precisely via the determination of the transmission coefficients within the framework of variational transition state calculations [92CPC235, 93JA2408]. [Pg.7]

The use of even the very simple models for isothermal operation described in Section IV,B requires a substantial amount of information regarding the elementary iate processes occurring in a gas-liquid-particle operation, as discussed in Section IV,A. While a considerable amount of information of this kind is available in the chemical engineering literature, it is widely scattered. It will be attempted in this section to present a comprehensive review of this information in order to facilitate its use. It is hoped that this review will be of value not only to those chemical engineers directly interested in the practical applications of gas-liquid-particle operations, but also, by pointing to the several areas characterized by very limited information, to those interested in research in this field. [Pg.90]

Thus, two interpretations based on two different concepts of the effect of temperature on dipole orientation have been put forward. The two views clash with each other on physical as well as chemical grounds. However, the view based on the correlation of Fig. 25 introduces chemical concepts that are absent in the other, which ignores some definite facts. For instance, although a value for dEa=0/dT is not available for Ga, the temperature coefficient of C is apparently small.905 Ga is universally recognized as a strongly hydrophilic metal. Therefore, according to the simple model of up-and-down dipoles, the effect of temperature should be major, which is in fact not the case. [Pg.185]

Box models and box-diffusion models have few degrees of freedom and they must describe physical, chemical, and biological processes very crudely. They are based on empirical relations rather than on first principles. Nevertheless, the simple models have been useful for obtaining some general features of the carbon cycle and retain some important roles in carbon cycle research (Craig and Holmen, 1995 Craig et al, 1997 Siegenthaler and joos, 1992). [Pg.303]

Autocatalysis can cause sustained oscillations in batch systems. This idea originally met with skepticism. Some chemists believed that sustained oscillations would violate the second law of thermodynamics, but this is not true. Oscillating batch systems certainly exist, although they must have some external energy source or else the oscillations will eventually subside. An important example of an oscillating system is the circadian rhythm in animals. A simple model of a chemical oscillator, called the Lotka-Volterra reaction, has the assumed mechanism ... [Pg.57]

In general, it is easier to use models such as these to predict the distribution of chemicals (i.e., relationship between exposure and tissue concentration) than it is to predict their toxic action. The relationship between tissue concentration and toxicity is not straightforward for a diverse group of compounds, and depends on their mode of action. Even with distribution models, however, the picture can be complicated by species differences in metabolism, as in the case of models for bioconcentration and bioaccumulation (see Chapter 4). Rapid metabolism can lead to lower tissue concentrations than would be predicted from a simple model based on values. Thus, such models need to be used with caution when dealing with different species. [Pg.326]

Tanford, C, Theory of Protein Titration Curves. 11. Calculations for Simple Models at Low Ionic Strength, Journal of the American Chemical Society 79, 5340, 1957. [Pg.622]

There is a deluge of papers, as well as of methods and of approaches, addressed to these problems. It is significant that in this blossoming of studies there is space for very simple models (as regards the material composition of the model) as well as for very complex models with a high degree of realism in the chemical composition. [Pg.14]

The percutaneous absorption picture can be qualitatively clarified by considering Fig. 3, where the schematic skin cross section is placed side by side with a simple model for percutaneous absorption patterned after an electrical circuit. In the case of absorption across a membrane, the current or flux is in terms of matter or molecules rather than electrons, and the driving force is a concentration gradient (technically, a chemical potential gradient) rather than a voltage drop [38]. Each layer of a membrane acts as a diffusional resistor. The resistance of a layer is proportional to its thickness (h), inversely proportional to the diffusive mobility of a substance within it as reflected in a... [Pg.211]

Calcium-sodium-chloride-type brines (which typically occur in deep-well-injection zones) require sophisticated electrolyte models to calculate their thermodynamic properties. Many parameters for characterizing the partial molal properties of the dissolved constituents in such brines have not been determined. (Molality is a measure of the relative number of solute and solvent particles in a solution and is expressed as the number of gram-molecular weights of solute in 1000 g of solvent.) Precise modeling is limited to relatively low salinities (where many parameters are unnecessary) or to chemically simple systems operating near 25°C. [Pg.826]

Several calculations of the chemical shielding tensor have been carried out by different methods for simple model disilenes. For H2Si=SiH2, calculated values of 300,44 291,43 and 195 ppm46 have been obtained for Act, the CSA spread. A value of 255 ppm has been calculated for Me2 Si=SiMe2,46 and a value of 120 ppm was obtained for (CH2=CH)2Si=Si... [Pg.242]

Simple models are used to Identify the dominant fate or transport path of a material near the terrestrial-atmospheric Interface. The models are based on partitioning and fugacity concepts as well as first-order transformation kinetics and second-order transport kinetics. Along with a consideration of the chemical and biological transformations, this approach determines if the material is likely to volatilize rapidly, leach downward, or move up and down in the soil profile in response to precipitation and evapotranspiration. This determination can be useful for preliminary risk assessments or for choosing the appropriate more complete terrestrial and atmospheric models for a study of environmental fate. The models are illustrated using a set of pesticides with widely different behavior patterns. [Pg.197]

In this section, two models of development were presented, a complex model consisting of a multioperon genome and a cytoplasm, and a simple model based on random Boolean networks. The simpler model was explained in more detail, as it is the basis for the extended example described here. This model utilizes both development and evolution to get to a cell that can develop into a multicellular organism able to seek a chemical trace. [Pg.322]


See other pages where Chemical simple model is mentioned: [Pg.895]    [Pg.536]    [Pg.720]    [Pg.237]    [Pg.198]    [Pg.342]    [Pg.655]    [Pg.31]    [Pg.13]    [Pg.1]    [Pg.8]    [Pg.2]    [Pg.500]    [Pg.221]    [Pg.325]    [Pg.145]    [Pg.379]    [Pg.87]    [Pg.706]    [Pg.8]    [Pg.319]    [Pg.449]    [Pg.229]    [Pg.13]    [Pg.35]    [Pg.807]    [Pg.25]    [Pg.429]    [Pg.42]    [Pg.450]   
See also in sourсe #XX -- [ Pg.486 ]




SEARCH



Chemical impurity models, simple

Simple model

Simple quantum chemical models of electronic excitation

© 2024 chempedia.info