Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical processes, scale

CHEMICAL PROCESS SCALE-UP TOOLS MIXING CALCULATIONS, STATISTICAL DESIGN OF EXPERIMENTS, AND AUTOMATED LABORATORY REACTORS... [Pg.251]

In this chapter we use scale-up to refer to quantitative chemical process scale-up. Processes that do not involve chemical reactions, such as formulation processes, must also be scaled up. Many aspects of process scale-up are common between the two areas, but each has unique challenges. [Pg.262]

Zlota, A.A., Chemical process scale-up using the RCl and VisiMix Calculations, presented at the... [Pg.263]

Chemical engineering plays a central and pivotal role in scale-up operations. Dr. Andrei Zlota discusses chemical process scale-up tools, mixing calculations, statistical design of experiments, and automated laboratory reactors. [Pg.408]

Many of the fiindamental physical and chemical processes at surfaces and interfaces occur on extremely fast time scales. For example, atomic and molecular motions take place on time scales as short as 100 fs, while surface electronic states may have lifetimes as short as 10 fs. With the dramatic recent advances in laser tecluiology, however, such time scales have become increasingly accessible. Surface nonlinear optics provides an attractive approach to capture such events directly in the time domain. Some examples of application of the method include probing the dynamics of melting on the time scale of phonon vibrations [82], photoisomerization of molecules [88], molecular dynamics of adsorbates [89, 90], interfacial solvent dynamics [91], transient band-flattening in semiconductors [92] and laser-induced desorption [93]. A review article discussing such time-resolved studies in metals can be found in... [Pg.1296]

Control technology requirements vary according to the scale of operation and type of emission problem. For instance, electrostatic precipitator design requirements for fly-ash control from 1000-MW coal-fired power boilers differ from those for a chemical process operation. In the discussion that follows, priority is given to control technology for the CPI as opposed to the somewhat special needs of other industries. [Pg.385]

Product innovation absorbs considerable resources in the fine chemicals industry, in part because of the shorter life cycles of fine chemicals as compared to commodities. Consequently, research and development (R D) plays an important role. The main task of R D in fine chemicals is scaling-up lab processes, as described, eg, in the ORAC data bank or as provided by the customers, so that the processes can be transferred to pilot plants (see Pilot PLANTS AND microplants) and subsequently to industrial-scale production. Thus the R D department of a fine chemicals manufacturer typically is divided into a laboratory or process research section and a development section, the latter absorbing the Hon s share of the R D budget, which typically accounts for 5 to 10% of sales. Support functions include the analytical services, engineering, maintenance, and Hbrary. [Pg.436]

Reciprocating Compressors. Prior to 1895, when Linde developed his air Hquefaction apparatus, none of the chemical processes used industrially required pressures much in excess of I MPa (145 psi) and the need for a continuous supply of air at 20 MPa provided the impetus for the development of reciprocating compressors. The introduction of ammonia, methanol, and urea processes in the early part of the twentieth century, and the need to take advantage of the economy of scale in ammonia plants, led to a threefold increase in the power required for compression from 1920 to 1940. The development of reciprocating compressors was not easy Htfle was known about the effects of cycles of fluctuating pressure on the behavior of the... [Pg.99]

The scientific basis of extractive metallurgy is inorganic physical chemistry, mainly chemical thermodynamics and kinetics (see Thermodynamic properties). Metallurgical engineering reties on basic chemical engineering science, material and energy balances, and heat and mass transport. Metallurgical systems, however, are often complex. Scale-up from the bench to the commercial plant is more difficult than for other chemical processes. [Pg.162]

In lower pressure boilers a variety of additional treatments may be appropriate, particularly if the steam is used in chemical process or other nonturbine appHcation. Chelants and sludge conditioners are employed to condition scale and enable the use of less pure feedwater. When the dmm pressure is less than 7 MPa (1015 psia), sodium sulfite may be added direcdy to the boiler water as an oxygen scavenger. It has minimal effect on the oxygen concentration in the system before the boiler. [Pg.362]

Sulfamic acid has a unique combination of properties that makes it particularly well suited for scale removal and chemical cleaning operations, the main commercial appHcations. Sulfamic acid is also used in sulfation reactions, pH adjustment, preparation of synthetic sweeteners (qv), and a variety of chemical processing appHcations. Salts of sulfamic acid are used in electroplating (qv) and electroforrning operations as well as for manufacturing flame retardants (qv) and weed and hnish killers (see Herbicides). [Pg.60]

Because of the expanded scale and need to describe additional physical and chemical processes, the development of acid deposition and regional oxidant models has lagged behind that of urban-scale photochemical models. An additional step up in scale and complexity, the development of analytical models of pollutant dynamics in the stratosphere is also behind that of ground-level oxidant models, in part because of the central role of heterogeneous chemistry in the stratospheric ozone depletion problem. In general, atmospheric Hquid-phase chemistry and especially heterogeneous chemistry are less well understood than gas-phase reactions such as those that dorninate the formation of ozone in urban areas. Development of three-dimensional models that treat both the dynamics and chemistry of the stratosphere in detail is an ongoing research problem. [Pg.387]

Scale- Up of Electrochemical Reactors. The intermediate scale of the pilot plant is frequendy used in the scale-up of an electrochemical reactor or process to full scale. Dimensional analysis (qv) has been used in chemical engineering scale-up to simplify and generalize a multivariant system, and may be appHed to electrochemical systems, but has shown limitations. It is best used in conjunction with mathematical models. Scale-up often involves seeking a few critical parameters. Eor electrochemical cells, these parameters are generally current distribution and cell resistance. The characteristics of electrolytic process scale-up have been described (63—65). [Pg.90]

Rotameters The rotameter, an example of which is shown in Fig. 10-21, has become one of the most popular flowmeters in the chemical-process industries. It consists essentially of a plummet, or float, which is free to move up or down in a vertical, slightly tapered tube having its small end down. The fluid enters the lower end of the tube and causes the float to rise until the annular area between the float and the wall of the tube is such that the pressure drop across this constriction is just sufficient to support the float. Typically, the tapered tube is of glass and carries etched upon it a nearly linear scale on which the position of the float may be visually noted as an indication of the flow. [Pg.896]

Contrac tors bids offer the most rehable information on cost. Order-of-magnitude costs, however, may be required for preliminary studies. One way of estimating them is to obtain cost information from similar facihties and scale it to the proposed installation. Costs of steel storage tanks and vessels have been found to vaiy approximately as the 0.6 to 0.7 power of their weight [see Happel, Chemical Process Economics, Wiley, 1958, p. 267 also Williams, Chem. Eng., 54(12), 124 (1947)]. AU estimates cased on the costs of existing eqiiipment must be corrected for changes in the price index from the date when the equipment was built. Considerable uncertainty is involved in adjusting data more than a few years old. [Pg.1020]

Isolation procedures for many biochemicals are based on chromatography. Practically any substance can be selected from a crude mixture and eluted at relatively high purity from a chromatographic column with the right combination of adsorbent, conditions, and eluant. For bench scale or for a small pilot plant, such chromatography has rendered alternate procedures such as electrophoresis nearly obsolete. Unfortunately, as size increases, dispersion in the column ruins resolution. To produce small amounts or up to tens of kilograms per year, chromatography is an excellent choice. When the scale-up problem is solved, these procedures should displace some of the conventional steps in the chemical process industries. [Pg.2144]

Batch Furnaces This type of furnace is employed mainly for the heat treatment of metals and for the drying and calcination or ceramic articles. In the chemical process industry, batch furnaces may be used for the same purposes as batch-tray and truck dryers when the drying or process temperature exceeds 600 K (620°F). They are employed also for small-batch calcinations, thermal decompositions, and other chemical reactions which, on a larger scale, are performed in rotary Idlns, hearth furnaces, and shaft furnaces. [Pg.2404]


See other pages where Chemical processes, scale is mentioned: [Pg.79]    [Pg.329]    [Pg.186]    [Pg.166]    [Pg.251]    [Pg.252]    [Pg.254]    [Pg.256]    [Pg.258]    [Pg.260]    [Pg.262]    [Pg.79]    [Pg.329]    [Pg.186]    [Pg.166]    [Pg.251]    [Pg.252]    [Pg.254]    [Pg.256]    [Pg.258]    [Pg.260]    [Pg.262]    [Pg.341]    [Pg.476]    [Pg.388]    [Pg.334]    [Pg.48]    [Pg.514]    [Pg.18]    [Pg.226]    [Pg.85]    [Pg.66]    [Pg.85]    [Pg.89]    [Pg.260]    [Pg.386]    [Pg.395]    [Pg.92]    [Pg.720]    [Pg.1193]    [Pg.1212]    [Pg.30]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Challenges in Developing and Scaling Up Chemical Processes

Chemical engineering process scale

Chemical scale

Handling large-scale chemical processing plant

Industrial chemical process, first large-scale

Process large-scale chemical

Process scale

Processing scale

Scale-up of chemical processes

Scaling-down chemical processes

Switching from Batch to Continuous Processing for Fine and Intermediate-Scale Chemicals Manufacture

© 2024 chempedia.info