Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical elements Table

The Periodic Table of The Chemical Elements (Table 2.3) was first organized by Mendeleyeff in 1869 [7] well before quantum mechanics and the modem theory of atomic structure, by using group analogies in chemical and physical properties Mendeleyeff even predicted two as yet undiscovered elements (Ga, Ge) and left spaces for them in his table. [Pg.14]

For nearly half a century, Mendeleev s periodic table remained an empirical compilation of the relationship of the elements. Only after the first atomic model was developed by the physicists of the early twentieth century, which took form in Bohr s model, was it possible to reconcile the involved general concepts with the specificity of the chemical elements. Bohr indeed expanded Rutherford s model of the atom, which tried to connect the chemical specificity of the elements grouped in Mendeleev s table with the behavior of electrons spinning around the nucleus. Bohr hit upon the idea that Mendeleev s periodicity could... [Pg.31]

Table 1. Chemical Elements Essential to Healthy Growth of Plants ... Table 1. Chemical Elements Essential to Healthy Growth of Plants ...
There are numerous misconceptions about the sources of various chemical elements in waste, particularly those that are potential acid formers when the waste is incinerated or mechanically converted and used as a refuse-derived fuel. For example, it is often mistakenly stated that the source of chlorine in waste, hence a potential source of HCl emissions, is poly(vinyl chloride). The relative contents of selected, potentially acid-forming elements in the organic portion of a sample of waste collected from various households in one U.S. East Coast city is given in Table 2 (17). In this city, a chief source of chlorine in the waste is NaCl, probably from food waste. [Pg.543]

F. P. Venable, The Developmeni of ihe Periodic Law, Chemical Publishing Co., Easton. Pa., 1896. This i.s Ihe first general review of periodic tables and has an almost complete colleclion of those published to that lime. J. W. Van Spronsen. The Periodic Syeiem of ihe Chemical Elements, Elsevier. Amsterdam, 1969, 368 pp. An excellent modem account of the historical developments leading up to Mendeleev s table. [Pg.20]

W. H. E. Schwarz, Towards a Physical Explanation of the Periodic Table (PT) of Chemical Elements, in Fundamental World of Quantum Chemistry A Tribute to Per-Olov Lowdin, Vol. 3, E. Brandas, E. Kryachko (eds.), Springer, Dordrecht, pp. 645-669, 2004. Also see S.-G. Wang, W. H. E. Schwarz, Icon of Chemistry The Periodic System of Chemical Elements in the New Century, Angewandte Chemie International Edition, 2009 (in press). [Pg.12]

Arguably, however, Mendeleev s greatest achievement was not the periodic table so much as the recognition of the periodic system on which it was based. Of the nearly 1,000 variations that have been published since, all are attempts to represent the fundamental rule that after certain but varying intervals, the chemical elements show an approximate repetition in their properties. [Pg.112]

It graces the walls of lecture halls and laboratories of all types, from universities to industry. It is one of the most powerful icons of science. It captures the essence of chemistry in one elegant pattern. The periodic table provides a concise way of understanding how all known chemical elements react with one another and enter into chemical bonding, and it helps to explain the properties of each element that make it react in such a fashion. [Pg.123]

But what would become of Mendeleev s periodic system which now seemed to consist of 300 or so "elements" To some chemists, the discovery of isotopes implied the end of the periodic system as it was known.3 These chemists suggested that it would be necessary to consider the individual new isotopes as the new "elements." But the chemist Paneth adopted a less reductionist approach, arguing that the periodic table of the familiar chemical elements should be retained because it dealt with the "elements" that were of interest to chemists. A justification for this view was provided by the fact that, with a few exceptions, the chemical properties of isotopes of the same element are indistinguishable.4 Moreover, Paneth appealed to Mendeleev s distinction between the two senses of the concept of an "element" in order to provide a philosophical rationale for the retention of the chemist s periodic table. Paneth argued that the discovery of isotopes of the elements represents the discovery of new elements as simple substances, whereas periodic... [Pg.132]

More detailed statistical analyses (chemical element balance, principal component analysis and factor analysis) demonstrate that soil contributes >50% to street dust, iron materials, concrete/cement and tire wear contribute 5-7% each, with smaller contributions from salt spray, de-icing salt and motor vehicle emissions (5,93-100). A list is given in Table VII of the main sources of the elements which contribute to street dust. [Pg.130]

Taylor, S. R. (1964). Abundance of chemical elements in the continental crust A new table. Geochim. Cosmochim. Acta 28,1273-1285. [Pg.376]

Not surprisingly, the acid-base balances within the Earth system almost all involve elements of high abundance, i.e., elements that have low atomic number. In many cases, the acidic molecule is an oxygen-containing oxidation product of an element. Table 16-1 lists the main acids and bases in the global environment. The sources of these acids are chemical reactions of reduced forms of the element involved. Both gas and aqueous phase reactions exist for production of acids. [Pg.423]

The written name of a compound includes the names of the elements it contains and information about the numbers of atoms of each element. The elements have to occur in some order, and this order is set by the same guidelines as for the chemical formula (see Section 3-11. Names can contain element names, roots derived from element names, and prefixes indicating the number of atoms of each element. Tables and 3 list the more important roots and prefixes that appear in the names of binaiy compounds. We can summarize the rules for naming binary compounds in three guidelines ... [Pg.133]

Silicon (Si) is a nonmetallic chemical element of the carbon family (Group rva of the periodic table) and makes up 27.7 percent of the Earth s crust. It is the second most abundant element in the crust, being surpassed only by oxygen. [Pg.308]

Cold plasma with reduced temperature is another way to cope with the most annoying problems from interferences, even in the case of low-resolution instruments [394], The effect consists of weaker ionisation conditions coming close to chemical ionisation [395]. In particular, argides are reduced by orders of magnitude in comparison to conventional ICP operation. However, at lower plasma temperatures, evaporation of analyte material is considerably reduced. Reducing the plasma temperature also has a dramatic effect on the ionisation (and therefore sensitivity) of many elements. Table 8.65 shows the ion population as a function of plasma temperature and ionisation potential. As a result, the cold plasma technique is only advantageous for a rather small number of elements and applications. [Pg.657]

Krebs, Robert E. The history and use of our earth s chemical elements a reference guide. Westport (CT) Greenwood P, 1998. ix, 346p. ISBN 0-313-30123-9 A short history of chemistry — Atomic structure The periodic table of the chemical elements — Alkali metals and alkali earth metals - Transition elements metals to nonmetals — Metallics and metalloids - Metalloids and nonmetals — Halogens and noble gases - Lanthanide series (rare-earth elements) — Actinide, transuranic, and transactinide series... [Pg.448]

The outer crust of earth has provided the solid foundation for the evolution of human beings, who are the prime focus of interest and concern to archaeology. The main components of this crust are minerals and rocks, some consolidated and others occurring as sediments, nonconsolidated deposits, created by weathering processes from the minerals and rocks. All these minerals, rocks, and sediments, as well as everything else in the universe, are made up from just over 100 chemical elements listed in Appendix I. Most of the elements in the crust of the earth occur in extremely low relative amounts, and only a few, listed in Table 1, make up almost 99% of its total bulk (Bloom 1969). [Pg.26]

Over 98% of the soil is made up of only eight major chemical elements, listed in Table 51, in order of decreasing abundance. The 90-odd others make up the remaining 2% many occur in the soil as secondary or minor elements, while a large number of still others are present in only very low, often trace, concentrations. Thus all soils contain main, minor, and trace elements combined into chemical compounds and aggregated into complex particles of varying shape, size, and chemical composition (see Textbox 8). [Pg.246]

A 68 element ICP-MS scan was performed on one dried white-colored paint sample. The chemical elements scanned for during the ICP analysis and the detection limits are provided in Table 5. Approximately 0.5 g of each sample was prepared by an acid digestion technique prior to conducting the ICP-MS analysis. Shown in Table 6 are the quantified ICP-MS results for the sample. Elements scanned for but not detected are either not present in the sample or may be present below the detection limit. [Pg.622]

Example PET. Let us consider polyethylene terephthalate) (PET, C oHK(h n, Ppet=1-35 g/cm3) of tpET =2 mm thickness and an X-radiation wavelength X= 0.15418 nm (CuKa). We set up a table with one row for each chemical element and sum both the masses and the mass absorption coefficients multiplied by the masses. After normalization to the molecular mass of the PET monomer, 192.17 amu, we find (p/p)pet = 1291.97/192.17 cm2/g a value 6.72 cm2/g. Considering the density ppet we find for the linear absorption coefficient Ppet =... [Pg.98]

Fig. 2.2. The periodic table of chemical elements, displayed in the modem long form. Each element is denoted by its symbol. From U (element atomic number 92) the elements have been... Fig. 2.2. The periodic table of chemical elements, displayed in the modem long form. Each element is denoted by its symbol. From U (element atomic number 92) the elements have been...
As in previous chapters, to appreciate the use of chemical elements in a new structure, here the brain, the nature of its compartments must be described. The evolution of the brain from the nematode can be traced all the way up to man in its quickly changing construction. No doubt there are lots of possible different arrangements of the zones of the brain but even so a line of ascending organisation can be drawn over a few hundred million years (Fig. 9.4 and Table 9.3). Particular features not stressed so far are the mutual development of the brain nerve and glial cells in zones, the possible functions of the zones (Table 9.4), the position... [Pg.375]

Knowledge of the 90 chemical elements and their properties in compounds led to the construction, by man, of a unique table of elements, the Periodic Table, of 18 Groups in six periods in a pattern fully explained by quantum theory, described in Chapter 2. There is then a huge variety of chemical combinations possible on the Earth and limitations on what is observable are related to element position in this Table. It also relates to the thermodynamic and/or kinetic stability of particular combinations of them in given physical circumstances (Table 11.3). The initial state of the surface of the Earth with which we are concerned was a dynamic water layer, the sea, covering a crust mainly of oxides and some sulfides and with an atmosphere of NH3, HCN, N2, C02(C0, CH4), H20, with some H2 but no 02. This combination of phases and their contents then produced an aqueous solution layer of particular components in which there were many concentration restrictions between it and the components of the other two layers due to thermodynamic stability, equilibria, or kinetic stability of the chemicals trapped in the phases. It is the case that equilibrium... [Pg.416]

In summary we see these chemotypes as starting (see Table 11.7) and then developing, with energy intake, the direct employment of chemical elements in components, as follows ... [Pg.431]


See other pages where Chemical elements Table is mentioned: [Pg.151]    [Pg.349]    [Pg.151]    [Pg.349]    [Pg.19]    [Pg.139]    [Pg.513]    [Pg.212]    [Pg.406]    [Pg.132]    [Pg.86]    [Pg.16]    [Pg.5]    [Pg.179]    [Pg.27]    [Pg.529]    [Pg.15]    [Pg.129]    [Pg.230]    [Pg.277]    [Pg.382]    [Pg.387]    [Pg.396]    [Pg.400]    [Pg.402]    [Pg.403]    [Pg.404]    [Pg.418]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Chemical elements

© 2024 chempedia.info