Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon bonding chemical

The oxidation state of any chemically bonded carbon may be assigned by adding —1 for each more electropositive atom and +1 for each more electronegative atom, and 0 for each carbon atom bonded directly to the carbon of interest (see Figure 10-11 for the Pauling electronegativity scale). That is,... [Pg.406]

Rakhi et al reported the conducting-polymers (polyaniline [PANI] and PPy)-coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors for the first time, in which the CNCs acted as a perfect backbone for the uniform distribution of the conducting polymers in the composites [16]. Ihe SC and maximum storage energy per unit mass of the composites were found to be comparable to one of the best-reported values for polymer-coated MWNTs. Dumanli et al. prepared the chemically bonded carbon nanofibers (CNFs)-PPy composite via electro-polymerization of Py on CNFs [17]. It showed that the final capacitance values were highly dependent on the number of deposition cycles and deposition rates. The best result for the coiled CNF-PPy composite system was found to be 27.6 C/cm at six times cycling using 25 mV/s. [Pg.422]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

The noble-gas fullerene compounds have no chemical bond between tire gas atom aird tire carbon atoms, yet tlrey are also extremely stable, since tire gas atom simply camrot escape from tire fullerene cage. In tlris light, tire... [Pg.2424]

We can combine our knowledge of molecular geometry with a feel for the polarity of chemical bonds to predict whether a molecule has a dipole moment or not The molec ular dipole moment is the resultant of all of the individual bond dipole moments of a substance Some molecules such as carbon dioxide have polar bonds but lack a dipole moment because their geometry causes the individual C=0 bond dipoles to cancel... [Pg.31]

Molecules with chirality centers are very common both as naturally occurring sub stances and as the products of chemical synthesis (Carbons that are part of a double bond or a triple bond can t be chirality centers)... [Pg.284]

VoIa.tiIes. Manganese may contain some chemically bonded water or carbon dioxide both of which can be removed by calcining or sintering. The Mexican Molango ore (Table 4) is an example of a low grade ore that is upgraded by calcination in a rotary kiln. [Pg.489]

Hydrogenolysis is analogous to hydrolysis and ammonolysis, which involve the cleavage of a bond induced by the action of water and ammonia, respectively. Chemical bonds that are broken by hydrogenolysis reactions include carbon—carbon, carbon—oxygen, carbon—sulfur, and carbon—nitrogen bonds. An example of hydrogenolysis is the hydrodealkylation of toluene to form benzene and methane ... [Pg.206]

Thermal Properties. Thermodynamic stabiUty of the chemical bonds comprising the PPS backbone is quite high. The bond dissociation energies (at 25°C) for the carbon—carbon, carbon—hydrogen, and carbon—sulfur bonds found in PPS are as follows C—C, 477 kj/mol (114 kcal/mol) ... [Pg.445]

The chemistry of propylene is characterized both by the double bond and by the aHyUc hydrogen atoms. Propylene is the smallest stable unsaturated hydrocarbon molecule that exhibits low order symmetry, ie, only reflection along the main plane. This loss of symmetry, which implies the possibiUty of different types of chemical reactions, is also responsible for the existence of the propylene dipole moment of 0.35 D. Carbon atoms 1 and 2 have trigonal planar geometry identical to that of ethylene. Generally, these carbons are not free to rotate, because of the double bond. Carbon atom 3 is tetrahedral, like methane, and is free to rotate. The hydrogen atoms attached to this carbon are aUyflc. [Pg.124]

Heat resistance is iafluenced by both the type and extent of cure. The greater the strength of the chemical bonds ia the cross-link, the better is the compound s heat resistance. Peroxide cure systems, which result ia carbon—carbon bonds, result ia a range of sulfur cross-links varyiag from 1 to > 30 sulfur atoms per cross-link, and heat resistance improves as the number of more thermally stable short cross-links predominates. This is an important factor ia designing the desired cure system. [Pg.236]

Electron spin resonance (esr) (6,44) has had more limited use in coal studies. A rough estimate of the free-radical concentration or unsatisfied chemical bonds in the coal stmcture has been obtained as a function of coal rank and heat treatment. For example, the concentration increases from 2 X 10 radicals/g at 80 wt % carbon to a sharp peak of about 50 x 10 radicals/g at 95 wt % carbon content and drops almost to zero at 97 wt % carbon. The concentration of these radicals is less than that of the common functional groups such as hydroxyl. However, radical existence seems to be intrinsic to the coal molecule and may affect the reactivity of the coal as well as its absorption of ultraviolet radiation. Measurements from room... [Pg.220]

A polymer blend is a physical or mechanical blend (alloy) of two or more homopolymers or copolymers. Although a polymer blend is not a copolymer according to the above definition, it is mentioned here because of its commercial importance and the frequency with which blends are compared with chemically bonded copolymers. Another technologically significant material relative to the copolymer is the composite, a physical or mechanical combination of a polymer with some unlike material, eg, reinforcing materials such as carbon black, graphite fiber, and glass (see Composite materials). [Pg.176]

Chapter 1 contains a review of carbon materials, and emphasizes the stmeture and chemical bonding in the various forms of carbon, including the foui" allotropes diamond, graphite, carbynes, and the fullerenes. In addition, amorphous carbon and diamond fihns, carbon nanoparticles, and engineered carbons are discussed. The most recently discovered allotrope of carbon, i.e., the fullerenes, along with carbon nanotubes, are more fully discussed in Chapter 2, where their structure-property relations are reviewed in the context of advanced technologies for carbon based materials. The synthesis, structure, and properties of the fullerenes and... [Pg.555]


See other pages where Carbon bonding chemical is mentioned: [Pg.67]    [Pg.67]    [Pg.177]    [Pg.2]    [Pg.233]    [Pg.240]    [Pg.260]    [Pg.67]    [Pg.67]    [Pg.177]    [Pg.2]    [Pg.233]    [Pg.240]    [Pg.260]    [Pg.714]    [Pg.178]    [Pg.214]    [Pg.147]    [Pg.155]    [Pg.329]    [Pg.469]    [Pg.217]    [Pg.250]    [Pg.208]    [Pg.495]    [Pg.271]    [Pg.48]    [Pg.285]    [Pg.416]    [Pg.69]    [Pg.252]    [Pg.1]    [Pg.4]    [Pg.23]    [Pg.29]    [Pg.70]    [Pg.361]   
See also in sourсe #XX -- [ Pg.669 , Pg.669 , Pg.670 ]




SEARCH



Carbon chemical bonds

Carbon chemical shifts hydrogen bonding

Carbon dioxide chemical bonds

Carbon tetrachloride chemical bonds

Carbonate, chemical

Chemicals, properties carbon—chlorine bond

Unusual Structures of Radical Ions in Carbon Skeletons Nonstandard Chemical Bonding by Restricting Geometries

© 2024 chempedia.info