Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide chemical bonds

The molecule methane (chemical formula CH4) has four covalent bonds, one between Carbon and each of the four Hydrogens. Carbon contributes an electron, and Hydrogen contributes an electron. The sharing of a single electron pair is termed a single bond. When two pairs of electrons are shared, a double bond results, as in carbon dioxide. Triple bonds are known, wherein three pairs (six electrons total) are shared as in acetylene gas or nitrogen gas. [Pg.30]

We can combine our knowledge of molecular geometry with a feel for the polarity of chemical bonds to predict whether a molecule has a dipole moment or not The molec ular dipole moment is the resultant of all of the individual bond dipole moments of a substance Some molecules such as carbon dioxide have polar bonds but lack a dipole moment because their geometry causes the individual C=0 bond dipoles to cancel... [Pg.31]

VoIa.tiIes. Manganese may contain some chemically bonded water or carbon dioxide both of which can be removed by calcining or sintering. The Mexican Molango ore (Table 4) is an example of a low grade ore that is upgraded by calcination in a rotary kiln. [Pg.489]

Chemical Properties The formation of salts with acids is the most characteristic reaction of amines. Since the amines are soluble in organic solvents and the salts are usually not soluble, acidic products can be conveniendy separated by the reaction with an amine, the unshared electron pair on the amine nitrogen acting as proton acceptor. Amines are good nucleophiles reactions of amines at the nitrogen atom have as a first step the formation of a bond with the unshared electron pair of nitrogen, eg, reactions with acid anhydrides, haUdes, and esters, with carbon dioxide or carbon disulfide, and with isocyanic or isothiocyanic acid derivatives. [Pg.198]

Sihcon carbide is comparatively stable. The only violent reaction occurs when SiC is heated with a mixture of potassium dichromate and lead chromate. Chemical reactions do, however, take place between sihcon carbide and a variety of compounds at relatively high temperatures. Sodium sihcate attacks SiC above 1300°C, and SiC reacts with calcium and magnesium oxides above 1000°C and with copper oxide at 800°C to form the metal sihcide. Sihcon carbide decomposes in fused alkahes such as potassium chromate or sodium chromate and in fused borax or cryohte, and reacts with carbon dioxide, hydrogen, ak, and steam. Sihcon carbide, resistant to chlorine below 700°C, reacts to form carbon and sihcon tetrachloride at high temperature. SiC dissociates in molten kon and the sihcon reacts with oxides present in the melt, a reaction of use in the metallurgy of kon and steel (qv). The dense, self-bonded type of SiC has good resistance to aluminum up to about 800°C, to bismuth and zinc at 600°C, and to tin up to 400°C a new sihcon nitride-bonded type exhibits improved resistance to cryohte. [Pg.465]

Radon forms a series of clathrate compounds (inclusion compounds) similar to those of argon, krypton, and xenon. These can be prepared by mixing trace amounts of radon with macro amounts of host substances and allowing the mixtures to crystallize. No chemical bonds are formed the radon is merely trapped in the lattice of surrounding atoms it therefore escapes when the host crystal melts or dissolves. Compounds prepared in this manner include radon hydrate, Rn 6H20 (Nikitin, 1936) radon-phenol clathrate, Rn 3C H 0H (Nikitin and Kovalskaya, 1952) radon-p-chlorophenol clathrate, Rn 3p-ClC H 0H (Nikitin and Ioffe, 1952) and radon-p-cresol clathrate, Rn bp-CH C H OH (Trofimov and Kazankin, 1966). Radon has also been reported to co-crystallize with sulfur dioxide, carbon dioxide, hydrogen chloride, and hydrogen sulfide (Nikitin, 1939). [Pg.244]

We have already mentioned that photosynthesis and other biochemical processes are the main causes of disequilibrium in aqueous solutions. The conversion of luminous energy into chemical energy (formation of stable covalent bonds) involves local lowering of the redox state. For instance, the conversion of carbon dioxide into glucose ... [Pg.575]

When high-temperature products are in an equilibrium state, many of the constituent molecules dissociate thermally. For example, the rotational and vibrational modes of carbon dioxide are excited and their mohons become very intense. As the temperature is increased, the chemical bonds between the carbon and oxygen atoms are broken. This kind of bond breakage is called thermal dissociation. The dissociahon of H2O becomes evident at about 2000 K and produces H2, OH, O2, H, and O at 0.1 MPa. About 50% of H2O is dissociated at 3200 K, rising to 90% at 3700 K. The products H2, O2, and OH dissociate to H and O as the temperature is increased further. The fraction of thermally dissociated molecules is suppressed as the pressure is increased at constant temperature. [Pg.32]


See other pages where Carbon dioxide chemical bonds is mentioned: [Pg.342]    [Pg.142]    [Pg.192]    [Pg.681]    [Pg.137]    [Pg.171]    [Pg.54]    [Pg.271]    [Pg.733]    [Pg.739]    [Pg.170]    [Pg.806]    [Pg.807]    [Pg.374]    [Pg.23]    [Pg.344]    [Pg.308]    [Pg.821]    [Pg.83]    [Pg.77]    [Pg.552]    [Pg.1024]    [Pg.35]    [Pg.76]    [Pg.151]    [Pg.226]    [Pg.103]    [Pg.200]    [Pg.145]    [Pg.1132]    [Pg.87]    [Pg.61]    [Pg.64]    [Pg.28]    [Pg.174]    [Pg.177]    [Pg.44]    [Pg.381]    [Pg.20]    [Pg.10]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



Carbon dioxide bonding

Carbon dioxide bonds

Carbon dioxide chemical

Carbonate, chemical

Chemical bonding carbon

© 2024 chempedia.info