Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chapter 4 Heat Exchanger

The overall inventory. In the preceding chapter, the optimization of reactor conversion was considered. As the conversion increased, the size (and cost) of the reactor increased, but that of separation, recycle, and heat exchanger network systems decreased. The same also tends to occur with the inventory of material in these systems. The inventory in the reactor increases with increasing conversion, but the inventory in the other systems decreases. Thus, in some processes, it is possible to optimize for minimum overall inventory. In the same way as reactor conversion can be varied to minimize the overall inventory, the recycle inert concentration also can be varied. [Pg.266]

Typical film coefficients can be used to build rough overall heat transfer coefficients. This should suffice in most cases to establish that the design is within ballpark accuracy. Later, for final design, certain critical services will be checked in detail. Typical film resistances for shell and tube heat exchangers and overall heat transfer coefficients for air cooled heat exchangers are shown in Chapter 2, Heat Exchangers. [Pg.224]

If exchanger shell diameter is in doubt, see Chapter 2, Heat Exchangers, the Shell Diameter section. In addition, this book provides a rough rating method for air-cooled heat exchangers. [Pg.224]

Although condensers likely warrant a separate chapter, conventional equipment often used alongside with heat exchanger are described here. In surface and contact condensers, the vapors can be condensed either by increasing pressure or extracting heat. In practice, condensers operate through removal of heat from the vapor. Condensers differ principally in the means of cooling. In surface... [Pg.53]

The function of reboilers has already been discussed. These components are essentially heat exchangers that are used to transfer heat to bring the liquid at the bottom of the column to its boiling point (refer also to discussions in Chapter 1). The principle types employed are jacketted kettles, simple kettle type reboilers, internal reboilers, and thermo-syphon reboilers. Examples of each type are illustrated in Figure 7. [Pg.170]

Chapter 1 provides a summary of important equations for estimating the terminal temperatures in a heat exchanger. Here we formalize a short estimating procedure for a countercurrent flow situation. Assume that a specifier of a heat exchanger has defined a preliminary sizing of the unit. The system requires heat and material balances. [Pg.501]

This chapter shows that chemical process systems may fail and have serious consequences to the workers, public and the environment. Comparing with Chapter 6, chemical processes are similar to the processes in a nuclear power plant, hence, they may be analyzed similarly because both consist of tanks, pipes heat exchangers, and sources of heat. As an example of analysis, we analyze a storage tank rupture. [Pg.304]

We also give calculations of the performance of some of these various gas turbine plants. Comparison between such calculations is often difficult, even spot calculations at a single condition with state points specified in the cycle, because of the thermodynamic assumptions that have to be made (e.g. how closely conditions in a chemical reformer approach equilibrium). Performance calculations by different inventors/authors are also dependent upon assumed levels of component performance such as turbomachinery polytropic efficiency, required turbine cooling air flows and heat exchanger effectiveness if these are not identical in the cases compared then such comparisons of overall performance become invalid. However, we attempt to provide some performance calculations where appropriate in the rest of the chapter. [Pg.135]

Chapter 3 of Volume 1 discusses many of the basic properties of gas and methods presented for calculating them. Chapter 6 of Volume 1 contains a brief discussion of heat transfer and an equation to estimate the heat required to change the temperature of a liquid. This chapter discusses heat transfer theory in more detail. The concepts discussed in this chapter can be used to predict more accurately the required heat duty for oil treating, as well as to size heat exchangers for oil and water. [Pg.7]

Heat exchangers used in gas production facilities are shell-and-tube, double-pipe, plate-and-frame, bath-type, forced-air, or direct-fired. In this chapter we will discuss the basic concepts for sizing and selecting heat exchangers. This is just a brief overview of this complex subject and is meant to provide the reader with a basis upon which to discuss specific sizing and selection details with heat exchange experts in engineering companies and with vendors. [Pg.47]

Bath-type heat exchangers can be either direct or indirect. In a direct bath exchanger, the heating medium exchanges heat directly with the fluid to be heated. The heat source for bath heaters can be a coil of a hot heat medium or steam, waste heat exhaust from an engine or turbine, or heat from electric immersion heaters. An example of a bath heater is an emulsion heater-treater of the type discussed in Volume 1. In this case, a fire tube immersed in the oil transfers heat directly to the oil bath. The calculation of heat duties and sizing of fire tubes for this type of heat exchanger can be calculated fom Chapter 2. [Pg.47]

In an indirect bath heat exchanger, the heating medium provides Iil u to an intermediary fluid, which then transfers the heat to the fluid h)cuig heated. An example of this is the common line heater used on many gas well streams to keep the temperature above the hydrate formal ion lem perature. A fire tube heats a water bath, which provides heat to tlie v.all siieam flowing through a coil immersed in the bath. Details pertaining to dcsi jit of indirect bath heaters are presented in Chapter 5. [Pg.48]

Once a specific heat exchanger is chosen, the flow per tube is known, so it is possible to use the correlations of Chapter 2 to calculate a more precise overall heat transfer coefficient (U). An example of calculation of U is given in Chapter 5. [Pg.90]

For the third edition, I added sections or chapters on heat exchangers, furnaces, inherently safer design, and runaway reactions, and extended many other chapters. Although I have read many accident reports since the first edition appeared, most have merely reinforced the messages of the book, and I added only those incidents that tell us something new. [Pg.427]

This chapter provides details on a number of commonly used process units reactors, heat exchangers, columns of various types (distillation, absorption, adsorption, evaporation, extraction), dryers, and grinders. The purpose of each unit or operation and the many configurations in which the units can be found are also discussed. [Pg.133]

Chapter VII Heat Exchangers, Condensers, and Cooler Boxes... [Pg.32]

The process engineer identifies heat exchange equipment in a process by the operation or function it serves at a particular location in the flow cycle. For example, the bottom vaporizer on a product finishing distillation column is usually termed Finishing Column ReboUer E-16, or Reboiler E-16 the overhead vapor condenser on this column is termed Condenser E-17 etc. The usual operations involved in developing a process flowsheet are described in Table 10-11, or Chapter 1, Volume 1. [Pg.53]

If sensible heat exchange exists, follow steps 2-6 of the Suggested Procedure for Vaporization with Sensible Heat Transfer, previously in this chapter. [Pg.182]

The overall performance will be monitored from the plant running log (see Chapter 33) and the heat exchange surfaces must be kept clean for maximum efficiency - meaning the lowest head pressure and lowest power. [Pg.76]

Chapter 4 is devoted to single-phase heat transfer. Data on heat transfer in circular micro-tubes and in rectangular, trapezoidal and triangular ducts are presented. Attention is drawn to the effect of energy dissipation, axial conduction and wall roughness on the thermal characteristics of flow. Specific problems connected with electro-osmotic heat transfer in micro-channels, three-dimensional heat transfer in micro-channel heat sinks and optimization of micro-heat exchangers are also discussed. [Pg.3]

Reaction occurs in the loop as well as in the stirred tank, and it is possible to eliminate the stirred tank so that the reactor volume consists of the heat exchanger and piping. This approach is used for very large reactors. In the limiting case where the loop becomes the CSTR without a separate agitated vessel, Equation (5.35) becomes q/Q > 10. This is similar to the rule-of-thumb discussed in Section 4.5.3 that a recycle loop reactor approximates a CSTR. The reader may wonder why the rule-of-thumb proposed a minimum recycle ratio of 8 in Chapter 4 but 10 here. Thumbs vary in size. More conservative designers have... [Pg.177]

Heat transfer is usually effected by coils or jackets, but can also be achieved by the use of external loop heat exchangers and, in certain cases, by the vaporisation of volatile material from the reactor. The treatment, here mainly concerns Jackets and coils. Other instances of heat transfer are illustrated in the simulation examples of Chapter 5. [Pg.132]

Chapter 4 eoncerns differential applications, which take place with respect to both time and position and which are normally formulated as partial differential equations. Applications include diffusion and conduction, tubular chemical reactors, differential mass transfer and shell and tube heat exchange. It is shown that such problems can be solved with relative ease, by utilising a finite-differencing solution technique in the simulation approach. [Pg.707]


See other pages where Chapter 4 Heat Exchanger is mentioned: [Pg.67]    [Pg.8]    [Pg.553]    [Pg.492]    [Pg.4]    [Pg.12]    [Pg.61]    [Pg.542]    [Pg.424]    [Pg.618]    [Pg.217]    [Pg.225]    [Pg.680]    [Pg.7]    [Pg.14]    [Pg.217]    [Pg.244]    [Pg.582]    [Pg.87]    [Pg.680]    [Pg.276]    [Pg.263]    [Pg.458]    [Pg.390]   


SEARCH



© 2024 chempedia.info