Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Contact Condensers

Sour gas sweetening may also be carried out continuously in the flowline by continuous injection of H2S scavengers, such as amine-aldehyde condensates. Contact time between the scavenger and the sour gas is the most critical factor in the design of the scavenger treatment process. Contact times shorter than 30 sec can be accommodated with faster reacting and higher volatility formulations. The amine-aldehyde conden-... [Pg.177]

Oilgas train Vessetsftrain Emulsion t/utmwit Condensate contact Test separator Gas compression. .. Vessels installed Initially. 2 x 100% trains 17 2 X 75% trains 2 vessels/train Future 1 X 100% rafrig. skM 1 vessel 2 x 75% train G + 1 refrig, skid... [Pg.27]

In comparison to surface condensers, contact condensers are more flexible, are simpler, and considerably less expensive to install. On the other hand, surface condensers require far less water and produce 10 to 20 times less condensate than contact type condensers,... [Pg.54]

Gailhofer G, Binder H. 1988. Allergic contact dermatitis caused by an acetone-formaldehyde condensate. Contact Dermatitis 18 110-111. [Pg.389]

Continuous Extraction. For relatively small DRy values, even multiple batch extraction cannot conveniently or economically be used—too much organic solvent is required. Continuous extraction using volatile solvents can be carried out in an apparatus in which the solvent is distilled from an extract-collection flask, condensed, contacted with the aqueous phase, and returned to the extract collection flask in a continuous fashion. [Pg.609]

The final restriction of simple columns stated earlier was that they should have a reboiler and a total condenser. It is possible to use materials fiow to provide some of the necessary heat transfer by direct contact. This transfer of heat via direct contact is known as thermal coupling. [Pg.151]

In such a plant the gas stream passes through a series of fractionating columns in which liquids are heated at the bottom and partly vaporised, and gases are cooled and condensed at the top of the column. Gas flows up the column and liquid flows down through the column, coming into close contact at trays in the column. Lighter components are stripped to the top and heavier products stripped to the bottom of the tower. [Pg.255]

It is known that even condensed films must have surface diffusional mobility Rideal and Tadayon [64] found that stearic acid films transferred from one surface to another by a process that seemed to involve surface diffusion to the occasional points of contact between the solids. Such transfer, of course, is observed in actual friction experiments in that an uncoated rider quickly acquires a layer of boundary lubricant from the surface over which it is passed [46]. However, there is little quantitative information available about actual surface diffusion coefficients. One value that may be relevant is that of Ross and Good [65] for butane on Spheron 6, which, for a monolayer, was about 5 x 10 cm /sec. If the average junction is about 10 cm in size, this would also be about the average distance that a film molecule would have to migrate, and the time required would be about 10 sec. This rate of Junctions passing each other corresponds to a sliding speed of 100 cm/sec so that the usual speeds of 0.01 cm/sec should not be too fast for pressurized film formation. See Ref. 62 for a study of another mechanism for surface mobility, that of evaporative hopping. [Pg.450]

Thus D(r) is given by the slope of the V versus P plot. The same distribution function can be calculated from an analysis of vapor adsorption data showing hysteresis due to capillary condensation (see Section XVII-16). Joyner and co-woikers [38] found that the two methods gave very similar results in the case of charcoal, as illustrated in Fig. XVI-2. See Refs. 36 and 39 for more recent such comparisons. There can be some question as to what the local contact angle is [31,40] an error here would shift the distribution curve. [Pg.578]

This description is traditional, and some further comment is in order. The flat region of the type I isotherm has never been observed up to pressures approaching this type typically is observed in chemisorption, at pressures far below P. Types II and III approach the line asymptotically experimentally, such behavior is observed for adsorption on powdered samples, and the approach toward infinite film thickness is actually due to interparticle condensation [36] (see Section X-6B), although such behavior is expected even for adsorption on a flat surface if bulk liquid adsorbate wets the adsorbent. Types FV and V specifically refer to porous solids. There is a need to recognize at least the two additional isotherm types shown in Fig. XVII-8. These are two simple types possible for adsorption on a flat surface for the case where bulk liquid adsorbate rests on the adsorbent with a finite contact angle [37, 38]. [Pg.618]

In moist enviromnents, water is present either at the metal interface in the fonn of a thin film (perhaps due to condensation) or as a bulk phase. Figure A3.10.1 schematically illustrates another example of anodic dissolution where a droplet of slightly acidic water (for instance, due to H2SO4) is in contact with an Fe surface in air [4]. Because Fe is a conductor, electrons are available to reduce O2 at the edges of the droplets. [Pg.922]

Figure C2.11.6. The classic two-particle sintering model illustrating material transport and neck growtli at tire particle contacts resulting in coarsening (left) and densification (right) during sintering. Surface diffusion (a), evaporation-condensation (b), and volume diffusion (c) contribute to coarsening, while volume diffusion (d), grain boundary diffusion (e), solution-precipitation (f), and dislocation motion (g) contribute to densification. Figure C2.11.6. The classic two-particle sintering model illustrating material transport and neck growtli at tire particle contacts resulting in coarsening (left) and densification (right) during sintering. Surface diffusion (a), evaporation-condensation (b), and volume diffusion (c) contribute to coarsening, while volume diffusion (d), grain boundary diffusion (e), solution-precipitation (f), and dislocation motion (g) contribute to densification.
In (d) the side arm outlet extends a short distance into the long neck of the flask, thus preventing any vapour which has been in contact with cork or rubber stoppers from condensing and flowing down the side arm. [Pg.47]

Dissolve 180 g. of commercial ammonium carbonate in 150 ml. of warm water (40-50°) in a 700 ml. flask. Cool to room temperature and add 200 ml. of concentrated ammonia solution (sp. gr. 0 88). Introduce slowly, with swirling of the contents of the flask, a solution of 50 g. of chloroacetic acid (Section 111,125) in 50 ml. of water [CAUTION do not allow chloroacetic acid to come into contact with the skin as unpleasant burns will result]. Close the flask with a solid rubber stopper and fix a thin copper wire to hold the stopper in place do not moisten the portion of the stopper in contact with the glass as this lubrication will cause the stopper to slide out of the flask. Allow the flask to stand for 24-48 hours at room temperature. Transfer the mixture to a distilling flask and distil in a closed apparatus until the volume is reduced to 100-110 ml. A convenient arrangement is to insert a drawn-out capillary tube into the flask, attach a Liebig s condenser, the lower end of which fits into a filter flask (compare Fig.//, 1) and connect the... [Pg.432]

In a 500 ml. flask, fitted with a reflux condenser, place 53 g. of 1-chloro-methylnaphthalene (Section IV.23), 84 g, of hexamethylenetetramine and 250 ml. of 1 1 acetic acid [CAUTION 1-Chloromethylnaphtha-lene and, to a lesser degree, a-naphthaldehyde have lachrymatory and vesicant properties adequate precautions should therefore be taken to avoid contact with these substances.] Heat the mixture under reflux for 2 hours it becomes homogeneous after about 15 minutes and then an oil commences to separate. Add 100 ml. of concentrated hydrochloric acid and reflux for a further 15 minutes this will hydrolyse any SchifiF s bases which may be formed from amine and aldehyde present and will also convert any amines into the ether-insoluble hydrochlorides. Cool, and extract the mixture with 150 ml. of ether. Wash the ether layer with three 50 ml. portions of water, then cautiously with 50 ml. of 10 per cent, sodium carbonate solution, followed by 50 ml. of water. Dry the ethereal solution with anhydrous magnesium sulphate, remove the ether by distillation on a steam bath, and distil the residue under reduced pressure. Collect the a-naphthaldehyde at 160-162718 mm. the yield is 38 g. [Pg.700]

You see that vacuum adapter stuck to the top of the condenser in fig. 7a Well, a closer look at it in fig. 7b will show that it has some drying agent sandwiched between two cotton balls and the nipple (tee heel) sealed with plastic wrap or foil. The drying agent can be either a commercial product called Drierite or calcium chloride. This attachment is placed on top of a condenser when refluxing solutions that have no water in them and must remain that way during the time they are refluxed. All this is to prevent moisture in the outside air from coming into contact with the cold surface of the of the inside walls of the condenser. This will surely happen and the condensed outside-air water will drip down into the reaction flask and ruin the experiment. This is not so much a... [Pg.26]

From the Kelvin equation it follows that the vapour pressure p over a concave meniscus must be less than the saturation vapour pressure p°. Consequently capillary condensation of a vapour to a liquid should occur within a pore at some pressure p determined by the value of r for the pore, and less than the saturation vapour pressure—always provided that the meniscus is concave (i.e. angle of contact <90°). [Pg.121]

It must always be borne in mind that when capillary condensation takes place during the course of isotherm determination, the pore walls are already covered with an adsorbed him, having a thickness t determined by the value of the relative pressure (cf. Chapter 2). Thus capillary condensation occurs not directly in the pore itself but rather in the inner core (Fig. 3.7). Consequently the Kelvin equation leads in the first instance to values of the core size rather than the pore size. The conversion of an r value to a pore size involves recourse to a model of pore shape, and also a knowledge of the angle of contact 0 between the capillary condensate and the adsorbed film on the walls. The involvement of 0 may be appreciated by consideration... [Pg.121]

In general there are two factors capable of bringing about the reduction in chemical potential of the adsorbate, which is responsible for capillary condensation the proximity of the solid surface on the one hand (adsorption effect) and the curvature of the liquid meniscus on the other (Kelvin effect). From considerations advanced in Chapter 1 the adsorption effect should be limited to a distance of a few molecular diameters from the surface of the solid. Only at distances in excess of this would the film acquire the completely liquid-like properties which would enable its angle of contact with the bulk liquid to become zero thinner films would differ in structure from the bulk liquid and should therefore display a finite angle of contact with it. [Pg.123]


See other pages where Contact Condensers is mentioned: [Pg.697]    [Pg.65]    [Pg.250]    [Pg.697]    [Pg.65]    [Pg.250]    [Pg.42]    [Pg.78]    [Pg.110]    [Pg.342]    [Pg.245]    [Pg.370]    [Pg.445]    [Pg.447]    [Pg.665]    [Pg.883]    [Pg.1596]    [Pg.25]    [Pg.149]    [Pg.441]    [Pg.444]    [Pg.9]    [Pg.92]    [Pg.153]    [Pg.281]    [Pg.418]    [Pg.679]    [Pg.149]    [Pg.137]    [Pg.225]    [Pg.113]    [Pg.125]   
See also in sourсe #XX -- [ Pg.440 ]




SEARCH



© 2024 chempedia.info