Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose treatment with

Cotton linters or wood pulp are nitrated using mixed acid followed by treatment with hot acidified water, pulping, neutralization, and washing. The finished product is blended for uniformity to a required nitrogen content. The controlling factors in the nitration process are the rates of diffusion of the acid into the fibers and of water out of the fibers, the composition of mixed acid, and the temperature (see Cellulose esters, inorganic esters). [Pg.14]

A number of after-treatments with polyester copolymers carried out after sodium hydroxide processing are reported to produce a more hydrophilic polyester fabric (197). Likewise, the addition of a modified cellulose ether has improved water absorbency (198). Other treatments used on cotton and blends are also effective on 100% polyester fabrics (166—169). In this case, polymeri2ation is used between an agent such as DMDHEU and a polyol to produce a hydrophilic network in the synthetic matrix (166—169). [Pg.449]

In the fibrous acetylation process, part or all of the acetic acid solvent is replaced with an inert dilutent, such as toluene, benzene, or hexane, to maintain the fibrous stmcture of cellulose throughout the reaction. Perchloric acid is often the catalyst of choice because of its high activity and because it does not react with cellulose to form acid esters. Fibrous acetylation also occurs upon treatment with acetic anhydride vapors after impregnation with a suitable catalyst such as zinc chloride (67). [Pg.253]

Conversion to cellulose II and cellulose III via caustic mercerization and Hquid ammonia treatment are commercial textile processes that are discussed later. Figure 7 shows the characteristic diffractograms (CuKa radiation) of native cellulose, cellulose mercerized with sodium hydroxide, and cellulose treated with Hquid ammonia. [Pg.313]

All of the eommereial alkyl eyanoaerylate monomers are low-viseosity liquids, and for some applications this can be an advantage. However, there are instances where a viseous liquid or a gel adhesive would be preferred, sueh as for application to a vertical surface or on porous substrates. A variety of viscosity control agents, depending upon the desired properties, have been added to increase the viscosity of instant adhesives [21]. The materials, which have been utilized, include polymethyl methacrylate, hydrophobic silica, hydrophobic alumina, treated quartz, polyethyl cyanoacrylate, cellulose esters, polycarbonates, and carbon black. For example, the addition of 5-10% of amorphous, non-crystalline, fumed silica to ethyl cyanoacrylate changes the monomer viscosity from a 2-cps liquid to a gelled material [22]. Because of the sensitivity of cyanoacrylate esters to basic materials, some additives require treatment with an acid to prevent premature gelation of the product. [Pg.856]

It is known that not all reactions proceed in the same manner on all adsorbent layers because the material in the layer may promote or retard the reaction. Thus, Ganshirt [209] was able to show that caffeine and codeine phosphate could be detected on aluminium oxide by chlorination and treatment with benzidine, but that there was no reaction with the same reagent on silica gel. Again the detection of amino acids and peptides by ninhydrin is more sensitive on pure cellulose than it is on layers containing fluorescence indicators [210]. The NBP reagent (. v.) cannot be employed on Nano-Sil-Ci8-100-UV2S4 plates because the whole of the plate background becomes colored. [Pg.90]

Hydrophilic liquids can also cause stabilization and amplification of fluorescence Thus, Dunphy et al employed water or ethanol vapor to intensify the emissions of their chromatograms after treatment with 2, 7 dichlorofluorescein [260] Some groups of workers have pointed out that the layer matenal itself can affect the yield of fluorescent energy [261 —263] Thus, polyamide and cellulose layers were employed m addition to silica gel ones [245] The fluorescence yield was generally increased by a factor of 5 to 10 [264], but the increase can reach 100-fold [234, 265]... [Pg.105]

The surface energy of fibers is closely related to the hydrophilicity of the fiber [38]. Some investigations are concerned with methods to decrease hydrophilicity. The modification, of wood cellulose fibers with stearic acid [43] hydrophobizes those fibers and improves their dispersion in polypropylene. As can be observed in jute-reinforced unsaturated polyester resin composites, treatment with polyvinylacetate increases the mechanical properties [24] and moisture repellency. [Pg.796]

For example, the treatment of cellulose fibers with hot polypropylene-maleic anhydride (MAH-PP) copolymers provides covalent bonds across the interface [40]. The mechanism of reaction can be divided in two steps ... [Pg.796]

Nordenfelt and Meurling Powder. A propint, patented in Engl in 1884, prepd as follows Cotton or other cellulosic material, was transformed into a material resembling hydrocellulose thru treatment with hydrochloric acid. It was then dried, pulverized, and mixed with S disd in carbon disulfide. After evapn of the CS2, the material was treated with a coned soln of K nitrate, granulated and dried Ref Daniel (1902), 583... [Pg.354]

Treatment of regenerated cellulosic fibers with longer fatty chain-type ether carboxylates prior to knitting, weaving, winding, or twisting improves the mentioned processes afterward [179],... [Pg.341]

Another activation treatment, suitable for most celluloses (although with great variation of the time required, 1 to 48 h) is polar solvent displacement at room temperature. The polymer is treated with a series of solvents, ending with the one that will be employed in the derivatization step. Thus, cellulose is treated with the following sequence of solvents, before it is dissolved in LiCl/DMAc water, methanol, and DMAc [37,45-48]. This method, however, is both laborious, needs ca. one day for micro crystalline cellulose, and expensive, since 25 mL of water 64 mb of methanol, and 80 mb of DMAc are required to activate one gram of cellulose. Its use may be reserved for special cases, e.g., where cellulose dissolution with almost no degradation is relatively important [49]. [Pg.111]

As previously discussed, solvents that dissolve cellulose by derivatization may be employed for further functionahzation, e.g., esterification. Thus, cellulose has been dissolved in paraformaldehyde/DMSO and esterified, e.g., by acetic, butyric, and phthalic anhydride, as well as by unsaturated methacrylic and maleic anhydride, in the presence of pyridine, or an acetate catalyst. DS values from 0.2 to 2.0 were obtained, being higher, 2.5 for cellulose acetate. H and NMR spectroscopy have indicated that the hydroxyl group of the methy-lol chains are preferably esterified with the anhydrides. Treatment of celliflose with this solvent system, at 90 °C, with methylene diacetate or ethylene diacetate, in the presence of potassium acetate, led to cellulose acetate with a DS of 1.5. Interestingly, the reaction with acetyl chloride or activated acid is less convenient DMAc or DMF can be substituted for DMSO [215-219]. In another set of experiments, polymer with high o -celliflose content was esterified with trimethylacetic anhydride, 1,2,4-benzenetricarboylic anhydride, trimellitic anhydride, phthalic anhydride, and a pyridine catalyst. The esters were isolated after 8h of reaction at 80-100°C, or Ih at room temperature (trimellitic anhydride). These are versatile compounds with interesting elastomeric and thermoplastic properties, and can be cast as films and membranes [220]. [Pg.138]

Cellulose may be solubilised by treatment with sodium hydroxide and carbon disulfide. It can be regenerated by acidification of the solution. This is the basis of the production of regenerated cellulose fibre, so-called viscose rayon , which is a major textile fibre. The technique is also used for the production of continuous cellulose-derived film, so-called cellophane (from cellulose and diaphane , the latter being French for transparent). [Pg.19]

In principle biomass is a useful fuel for fuel cells many of the technologies discussed above for using biomass as a fuel produce either methane or hydrogen directly and as highlighted below synthesis gas production from biomass for conversion to methanol is an attractive option. Cellulose-based material may be converted to a mixture of hydrogen (70% hydrogen content recovered), CO2 and methane by high-temperature treatment with a nickel catalyst. [Pg.180]

The stripping of cellulosic materials dyed with reactive dyes is carried out by alkaline reduction followed by hypochlorite oxidation, preceded by a boiling treatment with EDTA if metal-containing dyes have been used. For example, a treatment with 5 gA sodium carbonate or sodium hydroxide and 5g/l sodium dithionite at the boil is followed by a treatment in 0.5-1 °Tw hypochlorite, an antichlor and thorough rinsing. [Pg.415]

SINI Also known as the Double Steeping process. A variation of the viscose process for making regenerated cellulose fibers, in which the treatment with sodium hydroxide is done in two stages, at different concentrations. Invented by H. Sihtola, around 1976. [Pg.245]


See other pages where Cellulose treatment with is mentioned: [Pg.41]    [Pg.41]    [Pg.412]    [Pg.486]    [Pg.236]    [Pg.252]    [Pg.529]    [Pg.579]    [Pg.331]    [Pg.110]    [Pg.111]    [Pg.137]    [Pg.95]    [Pg.376]    [Pg.115]    [Pg.77]    [Pg.229]    [Pg.373]    [Pg.388]    [Pg.1361]    [Pg.24]    [Pg.225]    [Pg.310]    [Pg.19]    [Pg.313]    [Pg.362]    [Pg.173]    [Pg.1024]    [Pg.104]    [Pg.220]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Treatment with

© 2024 chempedia.info