Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Single-crystal model catalyst

Despite the success in modeling catalysts with single crystals and well defined surfaces, there is a clear need to develop models with higher levels of complexity to address the catalytically important issues specifically related to mixed oxide surfaces. The characterization and design of oxide surfaces have not proven to be easy tasks, but recent progress in identification of the key issues in catalytic phenomena on oxide surfaces by in-situ characterization techniques on an atomic and molecular scale brings us to look forward to vintage years in the field. [Pg.32]

Recently, the steady-state reaction kinetics of CO oxidation at high pressure over Ru , Rh " , Pt, Pd, and Ir single crystals have been studied in our laboratory. These studies have convincingly demonstrated the applicability and advantages of model single crystal studies, which combine UHV surface analysis techniques with high pressure kinetic measurements, in the elucidation of reaction mechanisms over supported catalysts. [Pg.162]

The nano-architecture is thus an important aspect to consider for the design of novel catalysts and a critical element to consider also in analyzing how to bridge the gap between model and real catalysts. In fact, in addition to the issues of pressure and material gap , the complexity gap exists." Goodman " over ten years ago pointed out that despite the successes in modelling catalysts with single crystals, there is a clear need to develop models with higher levels of complexity and which take into account the 3D nanoarchitecture. [Pg.81]

Surface science offers many opportunities in catalysis research because a variety of techniques are available to characterize in detail the composition and structure of the catalyst surface and to identify the adsorbed species. A frequent criticism of the surface science approach is that it is far removed from real catalysis since most of the surface science techniques can only be applied at low pressures and with model catalysts, often single-crystal surfaces. The so-called pressure gap has been bridged by combining, in the same apparatus, the techniques needed for surface analysis and characterization with the ability to measure reaction rates at elevated pressures. In addition, many techniques can also be apphed in situ at elevated pressures. [Pg.322]

The following describes results of three, relatively simple chemical reactions involving hydrocarbons on model single crystal metal catalysts that illustrate this general approach, namely, acetylene cyclotrimerization and the hydrogenation of acetylene and ethylene, all catalyzed by palladium. The selected reactions fulfdl the above conditions since they occur in ultrahigh vacuum, while the measured catalytic reaction kinetics on single crystal surfaces mimic those on reahstic supported catalysts. While these are all chemically relatively simple reactions, their apparent simplicity belies rather complex surface chemistry. [Pg.3]

Figure 19 CO + NO reaction Arrhenius plots for single-crystal, model planner-supported, and Pd/Al203 powder catalysts. The powder catalyst data were taken in the flow reaction mode (4.4/5.2 CO/NO ratio, steady state), and the model catalyst and single-crystal data were acquired for a batch reaction mode in 1 Torr of each reactant. (From Ref. 32.)... Figure 19 CO + NO reaction Arrhenius plots for single-crystal, model planner-supported, and Pd/Al203 powder catalysts. The powder catalyst data were taken in the flow reaction mode (4.4/5.2 CO/NO ratio, steady state), and the model catalyst and single-crystal data were acquired for a batch reaction mode in 1 Torr of each reactant. (From Ref. 32.)...
Oj-rich conditions, CO oxidation is reported to be demanding or structure sensitive on various catalysts from single crystals - to model catalysts with small Pd or Pt clusters supported on flat supports,to supported catalysts, - similar to the results presented in this section. [Pg.430]

Schiile, A., Nieken, U., Shekhah, O., Ranke, W., Schlogl, R. Kolios, G. (2007. )Styrene synthesis over iron oxide catalysts from single crystal model system to real catalysts. Phys. Chem. Chem. Phys., 9, 3619-3634. [Pg.211]

The typical industrial catalyst has both microscopic and macroscopic regions with different compositions and stmctures the surfaces of industrial catalysts are much more complex than those of the single crystals of metal investigated in ultrahigh vacuum experiments. Because surfaces of industrial catalysts are very difficult to characterize precisely and catalytic properties are sensitive to small stmctural details, it is usually not possible to identify the specific combinations of atoms on a surface, called catalytic sites or active sites, that are responsible for catalysis. Experiments with catalyst poisons, substances that bond strongly with catalyst surfaces and deactivate them, have shown that the catalytic sites are usually a small fraction of the catalyst surface. Most models of catalytic sites rest on rather shaky foundations. [Pg.171]

It is obvious that one can use the basic ideas concerning the effect of alkali promoters on hydrogen and CO chemisorption (section 2.5.1) to explain their effect on the catalytic activity and selectivity of the CO hydrogenation reaction. For typical methanation catalysts, such as Ni, where the selectivity to CH4 can be as high as 95% or higher (at 500 to 550 K), the modification of the catalyst by alkali metals increases the rate of heavier hydrocarbon production and decreases the rate of methane formation.128 Promotion in this way makes the alkali promoted nickel surface to behave like an unpromoted iron surface for this catalytic action. The same behavior has been observed in model studies of the methanation reaction on Ni single crystals.129... [Pg.79]

It is important to realize that the assumption of a rate-determining step limits the scope of our description. As with the steady state approximation, it is not possible to describe transients in the quasi-equilibrium model. In addition, the rate-determining step in the mechanism might shift to a different step if the reaction conditions change, e.g. if the partial pressure of a gas changes markedly. For a surface science study of the reaction A -i- B in an ultrahigh vacuum chamber with a single crystal as the catalyst, the partial pressures of A and B may be so small that the rates of adsorption become smaller than the rate of the surface reaction. [Pg.61]

Therefore, in many fundamentally oriented studies the complex catalyst is replaced by a simplified model, which is better defined. Such models range from supported particles from which all promoters have been removed, via well-defined particles deposited on planar substrates, to single crystals (Fig. 4.1). With the latter we are in the domain of surface science, where a wealth of informative techniques is available that do not work on technical catalysts. [Pg.129]

We have already mentioned that fundamental studies in catalysis often require the use of single crystals or other model systems. As catalyst characterization in academic research aims to determine the surface composition on the molecular level under the conditions where the catalyst does its work, one can in principle adopt two approaches. The first is to model the catalytic surface, for example with that of a single crystal. By using the appropriate combination of surface science tools, the desired characterization on the atomic scale is certainly possible in favorable cases. However, although one may be able to study the catalytic properties of such samples under realistic conditions (pressures of 1 atm or higher), most of the characterization is necessarily carried out in ultrahigh vacuum, and not under reaction conditions. [Pg.166]

The dilemma is thus investigations of real catalysts under relevant conditions by in situ techniques give little information on the surface of the catalyst, while techniques that are surface sensitive can often only be applied on model surfaces under vacuum. Bridging the gap between UHV and high pressures and between the surfaces of single crystals and of real catalysts is therefore an important issue in catalysis. [Pg.166]

The only way to know if a material acts as a catalyst is to test it in a reaction. Determining the activity of a catalyst is not as straightforward as it may seem. Particularly when working with single crystals and model systems, there are several pit falls. For example, we prefer to measure the activity in the limit of zero conversion, to avoid results that are influenced by thermodynamic constraints, such as limitations due to equilibrium between reactants and products. We also want data under conditions of known gas composition and accurate temperature. This may become problematic... [Pg.203]

A full analysis of the rate expression reveals that all data on the Cu(lOO) single crystal are modeled very well, as shown in Fig. 8.10. Even more important is that the model also describes data obtained on a real catalyst measured under considerably different conditions reasonably well, indicating that the micro-kinetic model captures the most important features of the methanol synthesis (Fig. 8.11). [Pg.316]

We have undertaken a series of experiments Involving thin film models of such powdered transition metal catalysts (13,14). In this paper we present a brief review of the results we have obtained to date Involving platinum and rhodium deposited on thin films of tltanla, the latter prepared by oxidation of a tltanliua single crystal. These systems are prepared and characterized under well-controlled conditions. We have used thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES) and static secondary Ion mass spectrometry (SSIMS). Our results Illustrate the power of SSIMS In understanding the processes that take place during thermal treatment of these thin films. Thermal desorption spectroscopy Is used to characterize the adsorption and desorption of small molecules, In particular, carbon monoxide. AES confirms the SSIMS results and was used to verify the surface cleanliness of the films as they were prepared. [Pg.81]

Characterization of catalytic phenomena at oxide surfaces includes (1) characterization of established catalyst surfaces to improve the catalytic performance, (2) characterization of new catalysts in comparison with conventional catalysts, (3) characterization of specific model surfaces such as single crystals and epitaxial flat surfaces to transfer the knowledge so obtained to catalytic systems or even to create a new type of catalyst, and (4) characterization of catalysis... [Pg.25]

A highly detailed picture of a reaction mechanism evolves in-situ studies. It is now known that the adsorption of molecules from the gas phase can seriously influence the reactivity of adsorbed species at oxide surfaces[24]. In-situ observation of adsorbed molecules on metal-oxide surfaces is a crucial issue in molecular-scale understanding of catalysis. The transport of adsorbed species often controls the rate of surface reactions. In practice the inherent compositional and structural inhomogeneity of oxide surfaces makes the problem of identifying the essential issues for their catalytic performance extremely difficult. In order to reduce the level of complexity, a common approach is to study model catalysts such as single crystal oxide surfaces and epitaxial oxide flat surfaces. [Pg.26]


See other pages where Single-crystal model catalyst is mentioned: [Pg.190]    [Pg.195]    [Pg.344]    [Pg.153]    [Pg.124]    [Pg.283]    [Pg.2]    [Pg.17]    [Pg.43]    [Pg.349]    [Pg.47]    [Pg.389]    [Pg.465]    [Pg.17]    [Pg.40]    [Pg.46]    [Pg.93]    [Pg.145]    [Pg.155]    [Pg.420]    [Pg.43]    [Pg.24]    [Pg.52]    [Pg.158]    [Pg.170]    [Pg.188]    [Pg.188]    [Pg.351]    [Pg.21]    [Pg.30]    [Pg.297]    [Pg.10]   


SEARCH



Catalyst modelling

Model catalyst

Model catalysts metal single crystals

Modeling crystallization

Single Crystals as Model Catalysts

© 2024 chempedia.info