Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst surface acidity

Results can be explained by considering that the catalyst surface acid-base properties determine the preferential formation of a given trimeric intermediate which in turn defines both the formation of the final product released to the gas phase (MO, IP or MES) and the nature of the carbon deposit. This interpretation is depicted in Fig. 5. Coke formed from the 4,6-dimethylhepta-3,5-dien-2-one intermediate on acidic catalysts will be... [Pg.307]

The MgyAlOx activity declines in the acetone oligomerization reaction due to a blockage of both basic and acid active sites by a carbonaceous residue formed by secondary aldol condensation reactions. The key intermediate species for coke formation are highly unsaturated linear trimers that are formed by aldol condensation of mesityl oxide with acetone and remain strongly bound to the catalyst surface. The catalyst surface acid-base properties determine the preferential formation of a given trimeric intermediate, which in turn defines the chemical nature of the carbon deposit. Aromatic hydrocarbons are the main component of coke formed on acidic Al-rich MgyAlOx samples whereas heavy a,P-unsaturated ketones preferentially form on basic Mg-rich catalysts. [Pg.310]

An additional effect of the use of an organic medium in the catalyst preparation is creation of mote defects in the crystalline lattice when compared to a catalyst made by the aqueous route (123). These defects persist in the active phase and are thought to result in creation of strong Lewis acid sites on the surface of the catalysts (123,127). These sites ate viewed as being responsible for the activation of butane on the catalyst surface by means of abstraction of a hydrogen atom. [Pg.454]

Oxidation and chlorination of the catalyst are then performed to ensure complete carbon removal, restore the catalyst chloride to its proper level, and maintain full platinum dispersion on the catalyst surface. Typically, the catalyst is oxidized in sufficient oxygen at about 510°C for a period of six hours or more. Sufficient chloride is added, usually as an organic chloride, to restore the chloride content and acid function of the catalyst and to provide redispersion of any platinum agglomeration that may have occurred. The catalyst is then reduced to return the metal components to their active form. This reduction is accompHshed by using a flow of electrolytic hydrogen or recycle gas from another Platforming unit at 400 to 480°C for a period of one to two hours. [Pg.224]

The formed methylcyclohexane carbocation eliminates a proton, yielding 3-methylcyclohexene. 3-Methylcyclohexene can either dehydrogenate over the platinum surface or form a new carbocation by losing H over the acid catalyst surface. This step is fast, because an allylic car-bonium ion is formed. Losing a proton on a Lewis base site produces methyl cyclohexadiene. This sequence of carbocation formation, followed by loss of a proton, continues till the final formation of toluene. [Pg.64]

Zeolites as cracking catalysts are characterized hy higher activity and better selectivity toward middle distillates than amorphous silica-alumina catalysts. This is attrihuted to a greater acid sites density and a higher adsorption power for the reactants on the catalyst surface. [Pg.71]

Acid-base reactivity is an important property of oxide catalysts, and its control is of interest in surface chemistry as well as being of importance in industrial applications. The exposed cations and anions on oxide surfaces have long been described as acid-base pairs. The polar planes of ZnO showed dissociative adsorption and subsequent decomposition of methanol and formic acid related with their surface acid-base properties[3]. Further examples related to the topic of acid-base properties have been accumulated to date[ 1,4-6]. [Pg.22]

Thus, the role of KOAc seems to be linked with its ability to keep acetic acid on the catalyst surface. This result complements nicely the hypothesis of Tamura and Yasui (1979), who theorized that KOAc forms double salts (e.g., KH(OAc)j)... [Pg.196]

The fluorination of CF3CH2CI into CF3CH2F over chromium oxides is accompanied by a dehydrofluorination reaction (formation mainly of CF2=CHC1). This dehydrofluorination is responsible for the deactivation of the catalyst. A study of the dehydrofluorination reaction of CF3CH2CI proves that the reaction is favoured when the degree of fluorination of chromium oxide increases. Consequently it would be favoured on strong acid sites. Adding nickel to chromium oxide decreases the formation of alkenes and increases the selectivity for fluorination while the total activity decreases. Two kinds of active sites would be present at the catalyst surface. The one would be active for both the reactions of dehydrofluorination and of fluorination, the other only for the fluorination reaction. [Pg.379]

Over An deposited on 3-D mesoporous Ti-Si02 with pore diameter of 9nm, one of the best results was obtained. At an SV of 4000 h/mL/g-cat., propylene conversion above 8%, PO selectivity of 91% giving a steady STY of 80 g PO/h/kg-cat. [84]. The surfaces of 3-D mesoporous Ti-Si02 were trimethylsilylated for rendering hydro-phobicity, which enables higher temperature operation of reaction [86]. As a solid phase promoter, alkaline or alkaline earth metal chlorides are efficient, however, chloride anions markedly enhance the coagulation of An particles in a short period [87]. Finally, Ba(N03)2 was selected as the best promoter which might kill the steady acid sites as BaO (after calcination) on the catalyst surfaces [84,88]. [Pg.194]

Spectroscopy. In the methods discussed so far, the information obtained is essentially limited to the analysis of mass balances. In that re.spect they are blind methods, since they only yield macroscopic averaged information. It is also possible to study the spectrum of a suitable probe molecule adsorbed on a catalyst surface and to derive information on the type and nature of the surface sites from it. A good illustration is that of pyridine adsorbed on a zeolite containing both Lewis (L) and Brbnsted (B) acid sites. Figure 3.53 shows a typical IR ab.sorption spectrum of adsorbed pyridine. The spectrum exhibits four bands that can be assigned to adsorbed pyridine and pyridinium ions. Pyridine adsorbed on a Bronsted site forms a (protonated) pyridium ion whereas adsorption on a Lewis site only leads to the formation of a co-ordination complex. [Pg.109]

Paradoxically, all these significant recent contributions to the theory of the ORR, together with most recent experimental efforts to characterize the ORR at a fuel cell cathode catalyst, have not led at aU to a consensus on either the mechanism of the ORR at Pt catalysts in acid electrolytes or even on how to properly determine this mechanism with available experimental tools. To elucidate the present mismatch of central pieces in the ORR puzzle, one can start from the identification of the slow step in the ORR sequence. With the 02-to-HOOads-to-HOads route appearing from recent DFT calculations to be the likely mechanism for the ORR at a Pt metal catalyst surface in acid electrolyte, the first electron and proton transfer to dioxygen, according to the reaction... [Pg.11]

IR spectroscopy of two supports was used for the determination of their surface acidity. The presence of Lewis acid sites on the surface of sepiolite allowed the preparation of a catalyst able to transform citral into menthol in fairly good yield under veiy mild conditions (90°C, 1 barH2). [Pg.87]

Photocatalytic oxidation is a novel approach for the selective synthesis of aldehyde and acid from alcohol because the synthesis reaction can take place at mild conditions. These reactions are characterized by the transfer of light-induced charge carriers (i.e., photogenerated electron and hole pairs) to the electron donors and acceptors adsorbed on the semiconductor catalyst surface (1-4). Infrared (IR) spectroscopy is a useful technique for determining the dynamic behavior of adsorbed species and photogenerated electrons (5-7). [Pg.463]

SCR systems at stationary diesel engines profit from the high exhaust gas temperatures of about 350-400 C, caused by the usually constant high load operation conditions of the diesel engine. In this temperature window nearly all known SCR catalysts are very active. Moreover, weight and size of the exhaust gas catalyst are usually not strictly limited, which results in a good NO, reduction efficiency (DeNOJ. However, DeNO, is not the only criterion for an SCR catalyst. Further requirements are excellent selectivities regarding NO and urea/ammonia as well as low ammonia slip, which is an undesired secondary emission of the SCR process. Therefore, all SCR catalysts exhibit surface acidity, which is necessary to store ammonia on the catalyst surface and, thus, to prevent ammonia slip. [Pg.262]


See other pages where Catalyst surface acidity is mentioned: [Pg.103]    [Pg.103]    [Pg.51]    [Pg.551]    [Pg.103]    [Pg.103]    [Pg.51]    [Pg.551]    [Pg.383]    [Pg.333]    [Pg.209]    [Pg.370]    [Pg.1321]    [Pg.65]    [Pg.79]    [Pg.88]    [Pg.263]    [Pg.224]    [Pg.246]    [Pg.246]    [Pg.455]    [Pg.22]    [Pg.180]    [Pg.385]    [Pg.401]    [Pg.527]    [Pg.581]    [Pg.601]    [Pg.75]    [Pg.349]    [Pg.136]    [Pg.87]    [Pg.149]    [Pg.297]    [Pg.346]    [Pg.12]    [Pg.101]    [Pg.106]   


SEARCH



Acid surface

Surface acidity of solid catalysts

Surface catalysts

© 2024 chempedia.info